import re import logging import base64 from io import BytesIO import os from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from vllm import LLM, SamplingParams def encode_image_to_base64(image): buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return img_str def create_message(sample): query = sample['query'] all_contents = [] matches = re.findall(r"<(image_\d+)>", query) split_text = re.split(r"", query) for i, fragment in enumerate(split_text): if fragment.strip(): all_contents.extend([ {"type": "text", "text": fragment} ]) if i < len(matches): if sample[matches[i]]: img_base64 = encode_image_to_base64(sample[matches[i]]) all_contents.extend([ { "type": "image", "image": f"data:image/png;base64,{img_base64}" } ]) else: logging.error( f"The image token {matches[i]} is in the query, but there is no corresponding image provided by the data") messages = [ { "role": "user", "content": all_contents } ] return messages class Qwen_Model: def __init__( self, model_path, temperature=0, max_tokens=1024 ): self.model_path = model_path self.temperature = temperature self.max_tokens = max_tokens self.model = Qwen2VLForConditionalGeneration.from_pretrained(self.model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", ) self.processor = AutoProcessor.from_pretrained(self.model_path) def get_response(self, sample): model = self.model processor = self.processor try: messages = create_message(sample) text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, add_vision_id=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=self.max_tokens, temperature=self.temperature) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return response[0] except Exception as e: print(e) return None class Qwen2_5_Model: def __init__( self, model_path="Qwen/Qwen2.5-VL-72B-Instruct", temperature=0, max_tokens=1024 ): self.model_path = model_path self.temperature = temperature self.max_tokens = max_tokens self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained( self.model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto" ) self.processor = AutoProcessor.from_pretrained(self.model_path) def get_response(self, sample): model = self.model processor = self.processor try: messages = create_message(sample) text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, add_vision_id=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=self.max_tokens, temperature=self.temperature) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return response[0] except Exception as e: print(e) return None class Qwen_vllm_Model: def __init__( self, model_path, greedy=1, max_tokens=1024, parallel=1, seed=42, device=0 ): self.model_path = model_path self.max_tokens = max_tokens self.model = LLM( model=model_path, enable_prefix_caching=True, trust_remote_code=True, limit_mm_per_prompt={"image": 8, "video": 1}, tensor_parallel_size=parallel, device=device ) self.sampling_params = SamplingParams( temperature=0 if greedy else 1, top_p=0.001 if greedy else 1, top_k=1 if greedy else -1, repetition_penalty=1, max_tokens=max_tokens, stop_token_ids=[], seed=seed ) self.processor = AutoProcessor.from_pretrained(self.model_path) def get_response(self, sample): try: messages = create_message(sample) text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, _ = process_vision_info([messages]) inputs = { "prompt": text, "multi_modal_data": {'image': image_inputs}, } out = self.model.generate( inputs, sampling_params=self.sampling_params, use_tqdm=False ) response = out[0].outputs[0].text return response except Exception as e: print(e) return None