import argparse import ast import json import os import pandas as pd def validate_scores(dataset_list, assert_score, model_name): for dataset in dataset_list: base_score = assert_score[dataset][model_name] if dataset == "OCRBench_MINI": score_file = os.path.join("outputs", f"{model_name}/{model_name}_{dataset}_score.json") cur_score = 0 with open(score_file, "r") as f: total_score = json.load(f) cur_score = total_score["Final Score Norm"] assert ( abs(cur_score - float(base_score)) <= 0.01 ), f"{dataset} on {model_name}: cur_score is {cur_score}, base_score is {base_score}" else: score_file = os.path.join("outputs", f"{model_name}/{model_name}_{dataset}_acc.csv") df = pd.read_csv(score_file) cur_score = df["Overall"].iloc[0] if dataset == "MMBench_V11_MINI": cur_score = df.loc[df["split"] == "dev", "Overall"].values assert ( abs(cur_score - float(base_score)) <= 0.01 ), f"{dataset} on {model_name}: cur_score is {cur_score}, base_score is {base_score}" print(f"cur_score is {cur_score}, base_score is {base_score}") def parse_arguments(): parser = argparse.ArgumentParser(description="Validate model scores against csv/json data") parser.add_argument("--dataset", type=str, required=True, help="Space-separated list of datasets") parser.add_argument( "--base_score", type=str, required=True, help="Dictionary string in format {dataset:{model:score}}" ) parser.add_argument("--model-name", type=str, required=True, help="Name of the model to validate") return parser.parse_args() def main(): args = parse_arguments() try: dataset_list = args.dataset.split() base_score = ast.literal_eval(args.base_score) except Exception as e: print(f"Parameter parsing error: {str(e)}") return validate_scores(dataset_list, base_score, args.model_name) if __name__ == "__main__": main()