Racktic's picture
Upload folder using huggingface_hub
b5beb60 verified
# flake8: noqa: F401, F403
import abc
import argparse
import csv
import multiprocessing as mp
import os
import os.path as osp
from pathlib import Path
import copy as cp
import random as rd
import requests
import shutil
import subprocess
import warnings
import pandas as pd
from collections import OrderedDict, defaultdict
from multiprocessing import Pool, current_process
from tqdm import tqdm
import datetime
import matplotlib.pyplot as plt
from tabulate import tabulate
from json import JSONDecoder
from huggingface_hub import scan_cache_dir
from huggingface_hub.utils._cache_manager import _scan_cached_repo
from sty import fg, bg, ef, rs
def modelscope_flag_set():
return os.environ.get('VLMEVALKIT_USE_MODELSCOPE', None) in ['1', 'True']
def process_punctuation(inText):
import re
outText = inText
punct = [
';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-',
'>', '<', '@', '`', ',', '?', '!'
]
commaStrip = re.compile('(\d)(,)(\d)') # noqa: W605
periodStrip = re.compile('(?!<=\d)(\.)(?!\d)') # noqa: W605
for p in punct:
if (p + ' ' in inText or ' ' + p in inText) or (re.search(
commaStrip, inText) is not None):
outText = outText.replace(p, '')
else:
outText = outText.replace(p, ' ')
outText = periodStrip.sub('', outText, re.UNICODE)
return outText
def h2r(value):
if value[0] == '#':
value = value[1:]
assert len(value) == 6
return tuple(int(value[i:i + 2], 16) for i in range(0, 6, 2))
def r2h(rgb):
return '#%02x%02x%02x' % rgb
def colored(s, color):
if isinstance(color, str):
if hasattr(fg, color):
return getattr(fg, color) + s + fg.rs
color = h2r(color)
return fg(*color) + s + fg.rs
def istype(s, type):
if isinstance(s, type):
return True
try:
return isinstance(eval(s), type)
except Exception as _:
return False
def bincount(lst):
bins = defaultdict(lambda: 0)
for item in lst:
bins[item] += 1
return bins
def get_cache_path(repo_id, branch='main', repo_type='datasets'):
try:
if modelscope_flag_set():
from modelscope.hub.file_download import create_temporary_directory_and_cache
if repo_type == 'datasets':
repo_type = 'dataset'
_, cache = create_temporary_directory_and_cache(model_id=repo_id, repo_type=repo_type)
cache_path = cache.get_root_location()
return cache_path
else:
from .file import HFCacheRoot
cache_path = HFCacheRoot()
org, repo_name = repo_id.split('/')
repo_path = Path(osp.join(cache_path, f'{repo_type}--{org}--{repo_name}/'))
hf_cache_info = _scan_cached_repo(repo_path=repo_path)
revs = {r.refs: r for r in hf_cache_info.revisions}
if branch is not None:
revs = {refs: r for refs, r in revs.items() if branch in refs}
rev2keep = max(revs.values(), key=lambda r: r.last_modified)
return str(rev2keep.snapshot_path)
except Exception as e:
import logging
logging.warning(f'{type(e)}: {e}')
return None
def proxy_set(s):
import os
for key in ['http_proxy', 'HTTP_PROXY', 'https_proxy', 'HTTPS_PROXY']:
os.environ[key] = s
def get_rank_and_world_size():
rank = int(os.environ.get('RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
return rank, world_size
def splitlen(s, sym='/'):
return len(s.split(sym))
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def d2df(D):
return pd.DataFrame({x: [D[x]] for x in D})
def cn_string(s):
import re
if re.search(u'[\u4e00-\u9fff]', s):
return True
return False
try:
import decord
except ImportError:
pass
def timestr(granularity='second'):
s = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
assert granularity in ['second', 'minute', 'hour', 'day']
if granularity == 'second':
return s
elif granularity == 'minute':
return s[:-2]
elif granularity == 'hour':
return s[:-4]
elif granularity == 'day':
return s[:-6]
def _minimal_ext_cmd(cmd, cwd=None):
env = {}
for k in ['SYSTEMROOT', 'PATH', 'HOME']:
v = os.environ.get(k)
if v is not None:
env[k] = v
env['LANGUAGE'] = 'C'
env['LANG'] = 'C'
env['LC_ALL'] = 'C'
out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env, cwd=cwd).communicate()[0]
return out
def githash(fallback='unknown', digits=8):
if digits is not None and not isinstance(digits, int):
raise TypeError('digits must be None or an integer')
try:
import vlmeval
except ImportError as e:
import logging
logging.error(f'ImportError: {str(e)}')
return fallback
try:
out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'], cwd=vlmeval.__path__[0])
sha = out.strip().decode('ascii')
if digits is not None:
sha = sha[:digits]
except OSError:
sha = fallback
return sha
def dict_merge(dct, merge_dct):
for k, _ in merge_dct.items():
if (k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], dict)): #noqa
dict_merge(dct[k], merge_dct[k])
else:
dct[k] = merge_dct[k]
def youtube_dl(idx):
cmd = f'youtube-dl -f best -f mp4 "{idx}" -o {idx}.mp4'
os.system(cmd)
def run_command(cmd):
if isinstance(cmd, str):
cmd = cmd.split()
return subprocess.check_output(cmd).decode()
def load_env():
import logging
logging.basicConfig(
format='[%(asctime)s] %(levelname)s - %(filename)s: %(funcName)s - %(lineno)d: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
try:
import vlmeval
except ImportError:
logging.error('VLMEval is not installed. Failed to import environment variables from .env file. ')
return
pth = osp.realpath(vlmeval.__path__[0])
pth = osp.join(pth, '../.env')
pth = osp.realpath(pth)
if not osp.exists(pth):
logging.error(f'Did not detect the .env file at {pth}, failed to load. ')
return
from dotenv import dotenv_values
values = dotenv_values(pth)
for k, v in values.items():
if v is not None and len(v):
os.environ[k] = v
logging.info(f'API Keys successfully loaded from {pth}')
def pip_install_robust(package):
import sys
retry = 3
while retry > 0:
try:
package_base = package.split('=')[0]
module = __import__(package)
return True
except ImportError:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
retry -= 1
return False
def version_cmp(v1, v2, op='eq'):
from packaging import version
import operator
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
def toliststr(s):
if isinstance(s, str) and (s[0] == '[') and (s[-1] == ']'):
return [str(x) for x in eval(s)]
elif isinstance(s, str):
return [s]
elif isinstance(s, list):
return [str(x) for x in s]
raise NotImplementedError
def extract_json_objects(text, decoder=JSONDecoder()):
pos = 0
while True:
match = text.find('{', pos)
if match == -1: break
try:
result, index = decoder.raw_decode(text[match:])
yield result
pos = match + index
except ValueError:
pos = match + 1
def get_gpu_memory():
import subprocess
try:
command = "nvidia-smi --query-gpu=memory.free --format=csv"
memory_free_info = subprocess.check_output(command.split()).decode('ascii').split('\n')[:-1][1:]
memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
return memory_free_values
except Exception as e:
print(f'{type(e)}: {str(e)}')
return []
def auto_split_flag():
flag = os.environ.get('AUTO_SPLIT', '0')
if flag == '1':
return True
_, world_size = get_rank_and_world_size()
try:
import torch
device_count = torch.cuda.device_count()
if device_count > world_size and device_count % world_size == 0:
return True
else:
return False
except:
return False