|
|
import torch |
|
|
import torch.distributed as dist |
|
|
from vlmeval.config import supported_VLM |
|
|
from vlmeval.utils import track_progress_rich |
|
|
from vlmeval.smp import * |
|
|
|
|
|
FAIL_MSG = 'Failed to obtain answer via API.' |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--data', type=str, nargs='+', required=True) |
|
|
parser.add_argument('--model', type=str, nargs='+', required=True) |
|
|
parser.add_argument('--nproc', type=int, default=4, required=True) |
|
|
parser.add_argument('--verbose', action='store_true') |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
def chat_mt(model, messages, dataset_name): |
|
|
assert len(messages) % 2 == 0 |
|
|
nturn = len(messages) // 2 |
|
|
utter_stack = [] |
|
|
predictions = [] |
|
|
|
|
|
for i in range(nturn): |
|
|
utter = messages[2 * i] |
|
|
utter_stack.append(utter) |
|
|
try: |
|
|
resp = model.chat(utter_stack, dataset=dataset_name) |
|
|
utter_stack.append(dict(role='assistant', content=resp)) |
|
|
except Exception as e: |
|
|
resp = FAIL_MSG + str(e) |
|
|
utter_stack.append(dict(role='assistant', content=resp)) |
|
|
predictions.append(resp) |
|
|
return predictions |
|
|
|
|
|
|
|
|
|
|
|
def infer_data_api(model, work_dir, model_name, dataset, index_set=None, api_nproc=4, ignore_failed=False): |
|
|
rank, world_size = get_rank_and_world_size() |
|
|
assert rank == 0 and world_size == 1 |
|
|
dataset_name = dataset.dataset_name |
|
|
data = dataset.data |
|
|
if index_set is not None: |
|
|
data = data[data['index'].isin(index_set)] |
|
|
|
|
|
model = supported_VLM[model_name]() if isinstance(model, str) else model |
|
|
assert getattr(model, 'is_api', False) |
|
|
assert hasattr(model, 'chat_inner') |
|
|
|
|
|
lt, indices = len(data), list(data['index']) |
|
|
structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)] |
|
|
|
|
|
out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl' |
|
|
res = {} |
|
|
if osp.exists(out_file): |
|
|
res = load(out_file) |
|
|
if ignore_failed: |
|
|
res = {k: v for k, v in res.items() if FAIL_MSG not in v} |
|
|
|
|
|
structs = [s for i, s in zip(indices, structs) if i not in res] |
|
|
indices = [i for i in indices if i not in res] |
|
|
|
|
|
structs = [dict(model=model, messages=struct, dataset_name=dataset_name) for struct in structs] |
|
|
|
|
|
if len(structs): |
|
|
track_progress_rich(chat_mt, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices) |
|
|
|
|
|
res = load(out_file) |
|
|
if index_set is not None: |
|
|
res = {k: v for k, v in res.items() if k in index_set} |
|
|
os.remove(out_file) |
|
|
return res |
|
|
|
|
|
|
|
|
def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4): |
|
|
dataset_name = dataset.dataset_name |
|
|
res = {} |
|
|
if osp.exists(out_file): |
|
|
res.update(load(out_file)) |
|
|
|
|
|
rank, world_size = get_rank_and_world_size() |
|
|
sheet_indices = list(range(rank, len(dataset), world_size)) |
|
|
lt = len(sheet_indices) |
|
|
data = dataset.data.iloc[sheet_indices] |
|
|
data_indices = [i for i in data['index']] |
|
|
|
|
|
|
|
|
all_finished = True |
|
|
for i in range(lt): |
|
|
idx = data.iloc[i]['index'] |
|
|
if idx not in res: |
|
|
all_finished = False |
|
|
if all_finished: |
|
|
res = {k: res[k] for k in data_indices} |
|
|
dump(res, out_file) |
|
|
return |
|
|
|
|
|
|
|
|
data = data[~data['index'].isin(res)] |
|
|
lt = len(data) |
|
|
|
|
|
model = supported_VLM[model_name]() if isinstance(model, str) else model |
|
|
assert hasattr(model, 'chat_inner') |
|
|
|
|
|
is_api = getattr(model, 'is_api', False) |
|
|
if is_api: |
|
|
lt, indices = len(data), list(data['index']) |
|
|
supp = infer_data_api( |
|
|
model=model, |
|
|
work_dir=work_dir, |
|
|
model_name=model_name, |
|
|
dataset=dataset, |
|
|
index_set=set(indices), |
|
|
api_nproc=api_nproc) |
|
|
for idx in indices: |
|
|
assert idx in supp |
|
|
res.update(supp) |
|
|
res = {k: res[k] for k in data_indices} |
|
|
dump(res, out_file) |
|
|
return model |
|
|
else: |
|
|
model.set_dump_image(dataset.dump_image) |
|
|
|
|
|
for i in tqdm(range(lt)): |
|
|
idx = data.iloc[i]['index'] |
|
|
if idx in res: |
|
|
continue |
|
|
|
|
|
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name): |
|
|
struct = model.build_prompt(data.iloc[i], dataset=dataset_name) |
|
|
else: |
|
|
struct = dataset.build_prompt(data.iloc[i]) |
|
|
|
|
|
response = chat_mt(model, struct, dataset_name) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if verbose: |
|
|
print(response, flush=True) |
|
|
|
|
|
res[idx] = response |
|
|
if (i + 1) % 20 == 0: |
|
|
dump(res, out_file) |
|
|
|
|
|
res = {k: res[k] for k in data_indices} |
|
|
dump(res, out_file) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def infer_data_job_mt(model, work_dir, model_name, dataset, verbose=False, api_nproc=4, ignore_failed=False): |
|
|
rank, world_size = get_rank_and_world_size() |
|
|
dataset_name = dataset.dataset_name |
|
|
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.tsv') |
|
|
|
|
|
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}.pkl') |
|
|
out_file = tmpl.format(rank) |
|
|
|
|
|
model = infer_data( |
|
|
model=model, model_name=model_name,work_dir=work_dir, dataset=dataset, |
|
|
out_file=out_file, verbose=verbose, api_nproc=api_nproc) |
|
|
if world_size > 1: |
|
|
dist.barrier() |
|
|
|
|
|
if rank == 0: |
|
|
data_all = {} |
|
|
for i in range(world_size): |
|
|
data_all.update(load(tmpl.format(i))) |
|
|
|
|
|
data = dataset.data |
|
|
for x in data['index']: |
|
|
assert x in data_all |
|
|
|
|
|
data['prediction'] = [data_all[x] for x in data['index']] |
|
|
if 'image' in data: |
|
|
data.pop('image') |
|
|
|
|
|
dump(data, result_file) |
|
|
for i in range(world_size): |
|
|
os.remove(tmpl.format(i)) |
|
|
return model |
|
|
|