VLMEvalKit / math_utils /__init__.py
Racktic's picture
Upload folder using huggingface_hub
b5beb60 verified
"""
Answer checker API that uses sympy to simplify expressions and check for equality.
Call grade_answer(given_answer: str, ground_truth: str).
FROM: https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py
"""
import re
import sympy
import copy as cp
import string
from pylatexenc import latex2text
from sympy.parsing import sympy_parser
# import sys
# sys.path.append('/data/xuqixin/tablefactory/verl/utils/reward_score/')
from . import math_normalize
from .grader import math_equal
# import math_normalize
# from grader import math_equal
# sympy might hang -- we don't care about trying to be lenient in these cases
BAD_SUBSTRINGS = ["^{", "^("]
BAD_REGEXES = ["\^[0-9]+\^", "\^[0-9][0-9]+"]
TUPLE_CHARS = "()[]"
def list_to_dict(lst):
return {chr(65 + i): val for i, val in enumerate(lst)}
def can_infer(answer, choices):
answer = str(answer)
copt = can_infer_option(answer, choices)
if copt:
return choices[copt]
else:
return answer # 选项的内容
def can_infer_option(answer, choices):
# Choices is a dictionary
if 'Failed to obtain answer via API' in answer:
return False
reject_to_answer = [
"Sorry, I can't help with images of people yet.",
"I can't process this file.",
"I'm sorry, but without the image provided",
'Cannot determine the answer'
]
for err in reject_to_answer:
if err in answer:
return 'Z'
def count_choice(splits, choices, prefix='', suffix=''):
cnt = 0
for c in choices:
if prefix + c + suffix in splits:
cnt += 1
return cnt
answer_mod = cp.copy(answer)
chars = '.()[],:;!*#{}'
for c in chars:
answer_mod = answer_mod.replace(c, ' ')
splits = [x.strip() for x in answer_mod.split()]
count = count_choice(splits, choices)
if count == 1:
for ch in choices:
if 'A' in splits and len(splits) > 3:
return False
if ch in splits:
return ch
elif count == 0 and count_choice(splits, {'Z', ''}) == 1:
return False
return False
def can_infer_text(answer, choices):
answer = answer.lower()
_, answer = match_answer(answer)
assert isinstance(choices, dict)
for k in choices:
assert k in string.ascii_uppercase # pip install string
choices[k] = str(choices[k]).lower()
cands = []
for k in choices:
if choices[k] in answer or grade_answer(answer, choices[k]):
cands.append(choices[k])
if len(cands) == 1:
return cands[0]
return False
def _sympy_parse(expr: str):
"""Parses an expression with sympy."""
py_expr = expr.replace("^", "**")
return sympy_parser.parse_expr(
py_expr,
transformations=(
sympy_parser.standard_transformations
+ (sympy_parser.implicit_multiplication_application,)
),
)
def _parse_latex(expr: str) -> str:
"""Attempts to parse latex to an expression sympy can read."""
expr = expr.replace("\\tfrac", "\\frac")
expr = expr.replace("\\dfrac", "\\frac")
expr = expr.replace("\\frac", " \\frac") # Play nice with mixed numbers.
expr = latex2text.LatexNodes2Text().latex_to_text(expr)
# Replace the specific characters that this parser uses.
expr = expr.replace("√", "sqrt")
expr = expr.replace("\sqrt", "sqrt")
expr = expr.replace("π", "pi")
expr = expr.replace("∞", "inf")
expr = expr.replace("∪", "U")
expr = expr.replace("·", "*")
expr = expr.replace("×", "*")
return expr.strip()
def _is_float(num: str) -> bool:
try:
float(num)
return True
except ValueError:
return False
def _is_int(x: float) -> bool:
try:
return abs(x - int(round(x))) <= 1e-7
except:
return False
def _is_frac(expr: str) -> bool:
return bool(re.search(r"^-?[0-9]+.?/0*[1-9][0-9]*.?$", expr))
def _str_is_int(x: str) -> bool:
try:
x = _strip_properly_formatted_commas(x)
x = float(x)
return abs(x - int(round(x))) <= 1e-7
except:
return False
def _str_to_int(x: str) -> bool:
x = x.replace(",", "")
x = float(x)
return int(x)
def _inject_implicit_mixed_number(step: str):
"""
Automatically make a mixed number evalable
e.g. 7 3/4 => 7+3/4
"""
p1 = re.compile("([0-9]) +([0-9])")
step = p1.sub("\\1+\\2", step) ## implicit mults
return step
def _strip_properly_formatted_commas(expr: str):
# We want to be careful because we don't want to strip tuple commas
p1 = re.compile("(\d)(,)(\d\d\d)($|\D)")
while True:
next_expr = p1.sub("\\1\\3\\4", expr)
if next_expr == expr:
break
expr = next_expr
return next_expr
def _normalize(expr: str) -> str:
"""Normalize answer expressions."""
if expr is None:
return None
# Remove enclosing `\text{}`.
m = re.search("^\\\\text\{(?P<text>.+?)\}$", expr)
if m is not None:
expr = m.group("text")
expr = expr.replace("\\%", "%")
expr = expr.replace("\\$", "$")
expr = expr.replace("$", "")
expr = expr.replace("%", "")
expr = expr.replace("³", "")
expr = expr.replace("²", "")
expr = expr.replace("°", "")
expr = expr.replace(" or ", " , ")
expr = expr.replace(" and ", " , ")
expr = expr.replace("million", "*10^6")
expr = expr.replace("billion", "*10^9")
expr = expr.replace("trillion", "*10^12")
for unit in [
"degree",
"cm",
"centimeter",
"meter",
"mile",
"second",
"minute",
"hour",
"day",
"week",
"month",
"year",
"foot",
"feet",
"inch",
"yard",
"liter",
]:
expr = re.sub(f"{unit}(es)?(s)? *(\^[0-9]+)?", "", expr)
expr = re.sub(f"\^ *\\\\circ", "", expr)
# expr = re.sub(f"\^*\\\\circ", "", expr)
if len(expr) > 0 and expr[0] == "{" and expr[-1] == "}":
expr = expr[1:-1]
expr = re.sub(",\\\\! *", "", expr)
if _is_float(expr) and _is_int(float(expr)):
expr = str(int(round(float(expr))))
if "\\" in expr:
try:
expr = _parse_latex(expr)
except:
pass
# edge case with mixed numbers and negative signs
expr = re.sub("- *", "-", expr)
expr = _inject_implicit_mixed_number(expr)
# expr = expr.replace(" ", "")
# # if we somehow still have latex braces here, just drop them
# expr = expr.replace("{", "")
# expr = expr.replace("}", "")
# don't be case sensitive for text answers
expr = expr.lower()
if _str_is_int(expr):
expr = str(_str_to_int(expr))
return expr
def count_unknown_letters_in_expr(expr: str):
expr = expr.replace("sqrt", "")
expr = expr.replace("frac", "")
letters_in_expr = set([x for x in expr if x.isalpha()])
return len(letters_in_expr)
def should_allow_eval(expr: str):
# we don't want to try parsing unknown text or functions of more than two variables
if count_unknown_letters_in_expr(expr) > 2:
return False
for bad_string in BAD_SUBSTRINGS:
if bad_string in expr:
return False
for bad_regex in BAD_REGEXES:
if re.search(bad_regex, expr) is not None:
return False
return True
def are_equal_under_sympy(ground_truth_normalized: str, given_normalized: str):
are_equal = False
try:
expr = f"({ground_truth_normalized})-({given_normalized})"
if should_allow_eval(expr):
sympy_diff = _sympy_parse(expr)
simplified = sympy.simplify(sympy_diff)
if simplified == 0:
are_equal = True
except:
pass
return are_equal
def split_tuple(expr: str):
"""
Split the elements in a tuple/interval, while handling well-formatted commas in large numbers
"""
expr = _strip_properly_formatted_commas(expr)
if len(expr) == 0:
return []
if (
len(expr) > 2
and expr[0] in TUPLE_CHARS
and expr[-1] in TUPLE_CHARS
and all([ch not in expr[1:-1] for ch in TUPLE_CHARS])
):
elems = [elem.strip() for elem in expr[1:-1].split(",")]
else:
elems = [expr]
return elems
def grade_answer(given_answer: str, ground_truth: str) -> bool:
"""
The answer will be considered correct if:
(a) it normalizes to the same string as the ground truth answer
OR
(b) sympy can simplify the difference between the expressions to 0
"""
if given_answer is None:
return False
ground_truth_normalized_mathd = math_normalize.normalize_answer(ground_truth)
given_answer_normalized_mathd = math_normalize.normalize_answer(given_answer)
# be at least as lenient as mathd
if ground_truth_normalized_mathd == given_answer_normalized_mathd:
return True
ground_truth_normalized = _normalize(ground_truth)
given_normalized = _normalize(given_answer)
if ground_truth_normalized is None:
return False
if ground_truth_normalized == given_normalized:
return True
if len(given_normalized) == 0:
return False
ground_truth_elems = split_tuple(ground_truth_normalized)
given_elems = split_tuple(given_normalized)
if len(ground_truth_elems) > 1 and (
ground_truth_normalized[0] != given_normalized[0]
or ground_truth_normalized[-1] != given_normalized[-1]
):
is_correct = False
elif len(ground_truth_elems) != len(given_elems):
is_correct = False
else:
for ground_truth_elem, given_elem in zip(ground_truth_elems, given_elems):
if _is_frac(ground_truth_elem) and _is_frac(given_elem):
# if fractions aren't reduced, then shouldn't be marked as correct
# so, we don't want to allow sympy.simplify in this case
is_correct = ground_truth_elem == given_elem
elif _str_is_int(ground_truth_elem) != _str_is_int(given_elem):
# if the ground truth answer is an integer, we require the given answer to be a strict match (no sympy.simplify)
is_correct = False
else:
is_correct = are_equal_under_sympy(ground_truth_elem, given_elem)
if not is_correct:
break
return is_correct
def remove_boxed(s):
left = "\\boxed{"
try:
assert s[:len(left)] == left
assert s[-1] == "}"
return s[len(left):-1]
except:
return None
def _last_boxed_only_string(string):
idx = string.rfind("\\boxed")
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
left_brace_idx = None
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if left_brace_idx is None:
left_brace_idx = i
elif string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if left_brace_idx is None or right_brace_idx is None:
return None
return string[left_brace_idx + 1: right_brace_idx].strip()
def match_answer(response):
is_matched = False
for ans_marker in ['answer:', "answer is", "answers are"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[ans_idx + len(ans_marker):].strip()
if response.endswith("\n"):
response = response[:-2]
for ans_marker in ["is answer", "is the answer", "are answers", "are the answers"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[:ans_idx].strip()
if response.endswith("\n"):
response = response[:-2]
# Find boxed
ans_boxed = _last_boxed_only_string(response)
if ans_boxed:
is_matched = True
response = ans_boxed
if ". " in response:
dot_idx = response.lower().rfind(". ")
if dot_idx != -1:
response = response[:dot_idx].strip()
for ans_marker in ['be ', "is ", "are ", "=", ": ", "get ", 'be\n', "is\n", "are\n", ":\n", "get\n"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[ans_idx + len(ans_marker):].strip()
if response.endswith("\n"):
response = response[:-2]
is_matched = is_matched if any([c.isdigit() for c in response]) else False # answer must have a digit
return is_matched, response
length_units = [
" m", " cm", " mm", " km", " mi", " yd", " ft",
" nm", " µm"
]
import math
def evaluate_math(model_output: str, ground_truth: str) -> bool:
model_output = str(model_output)
for unit in length_units:
if unit in model_output:
model_output = model_output.split(unit)[0].strip()
ground_truth = str(ground_truth)
for unit in length_units:
if unit in ground_truth:
ground_truth = ground_truth.split(unit)[0].strip()
if model_output.lower() == ground_truth.lower():
return True, model_output
pattern = r"(\d+)\s*to\s*(\d+)|\[(\d+),\s*(\d+)\]"
import re
match1 = re.match(pattern, model_output)
match2 = re.match(pattern, ground_truth)
if match1 and match2:
return True, model_output
is_matched, extracted_model_output = match_answer(model_output)
# grade simple algebra questions. if succeed, return; otherwise, proceed to more complex grading
if grade_answer(extracted_model_output, ground_truth):
return True, extracted_model_output
# return True
try:
if "\pi" in extracted_model_output or "\pi" in ground_truth:
equivs = []
for pi in [math.pi, 3.14]:
equivs.append(math_equal(extracted_model_output, ground_truth, timeout=True, pi=pi))
is_correct = any(equivs)
else:
is_correct = math_equal(extracted_model_output, ground_truth, timeout=True)
except:
is_correct = False
print(f"{extracted_model_output=}\n", f"{model_output=}\n", f"{ground_truth=}\n")
return is_correct, extracted_model_output