File size: 24,311 Bytes
b5beb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
import sys
from collections import deque
from vlmeval.dataset import SUPPORTED_DATASETS
from vlmeval.config import *
from vlmeval.smp import *
# Define valid modes
MODES = ('dlist', 'mlist', 'missing', 'circular', 'localize', 'check', 'run', 'eval', 'merge_pkl', 'scan')
CLI_HELP_MSG = \
f"""
Arguments received: {str(['vlmutil'] + sys.argv[1:])}. vlmutil commands use the following syntax:
vlmutil MODE MODE_ARGS
Where MODE (required) is one of {MODES}
MODE_ARG (optional) is the argument for specific mode
Some usages for xtuner commands: (See more by using -h for specific command!)
1. List all the dataset by levels: l1, l2, l3, etc.:
vlmutil dlist [l1/l2/l3/...]
2. List all the models by categories: 4.33.0, 4.37.0, api, etc.:
vlmutil mlist 4.33.0 [all/small/large]
3. Report missing results:
vlmutil missing [l1/l2/l3/...]
4. Create circular questions (only for multiple-choice questions with no more than 4 choices):
vlmutil circular input.tsv
5. Create a localized version of the dataset (for very large tsv files):
vlmutil localize input.tsv
6. Check the validity of a model:
vlmutil check [model_name/model_series]
7. Run evaluation for missing results:
vlmutil run l2 hf
8. Evaluate data file:
vlmutil eval [dataset_name] [prediction_file]
9. Merge pkl files:
vlmutil merge_pkl [pkl_dir] [world_size]
10. Scan evaluation results and detect api failure
vlmutil scan --model [model_list.txt or model_names] --data [dataset_names] --root [root_dir]
GitHub: https://github.com/open-compass/VLMEvalKit
""" # noqa: E501
dataset_levels = {
'l1': [
('MMVet', 'gpt-4-turbo_score.csv'), ('MMMU_DEV_VAL', 'acc.csv'),
('MathVista_MINI', 'gpt-4-turbo_score.csv'), ('HallusionBench', 'score.csv'),
('OCRBench', 'score.json'), ('AI2D_TEST', 'acc.csv'), ('MMStar', 'acc.csv'),
('MMBench_V11', 'acc.csv'), ('MMBench_CN_V11', 'acc.csv')
],
'l2': [
('MME', 'score.csv'), ('LLaVABench', 'score.csv'), ('RealWorldQA', 'acc.csv'),
('MMBench', 'acc.csv'), ('MMBench_CN', 'acc.csv'), ('CCBench', 'acc.csv'),
('SEEDBench_IMG', 'acc.csv'), ('COCO_VAL', 'score.json'), ('POPE', 'score.csv'),
('ScienceQA_VAL', 'acc.csv'), ('ScienceQA_TEST', 'acc.csv'), ('MMT-Bench_VAL', 'acc.csv'),
('SEEDBench2_Plus', 'acc.csv'), ('BLINK', 'acc.csv'), ('MTVQA_TEST', 'acc.json'),
('Q-Bench1_VAL', 'acc.csv'), ('A-Bench_VAL', 'acc.csv'), ('R-Bench-Dis', 'acc.csv'),
],
'l3': [
('OCRVQA_TESTCORE', 'acc.csv'), ('TextVQA_VAL', 'acc.csv'),
('ChartQA_TEST', 'acc.csv'), ('DocVQA_VAL', 'acc.csv'), ('InfoVQA_VAL', 'acc.csv'),
('SEEDBench2', 'acc.csv')
],
'live': [
('LiveMMBench_VQ_circular', 'acc.csv'), ('LiveMMBench_Spatial_circular', 'acc.csv'),
('LiveMMBench_Reasoning_circular', 'acc.csv'), ('LiveMMBench_Infographic', 'acc.csv'),
('LiveMMBench_Perception', 'acc.csv'), ('LiveMMBench_Creation', 'merged_score.json'),
],
'math': [
('MathVision', 'score.csv'), ('MathVerse_MINI_Vision_Only', 'score.csv'),
('DynaMath', 'score.csv'), ('WeMath', 'score.csv'), ('LogicVista', 'score.csv'),
('MathVista_MINI', 'gpt-4-turbo_score.csv'),
]
}
dataset_levels['l12'] = dataset_levels['l1'] + dataset_levels['l2']
dataset_levels['l23'] = dataset_levels['l2'] + dataset_levels['l3']
dataset_levels['l123'] = dataset_levels['l12'] + dataset_levels['l3']
models = {
'4.33.0': list(qwen_series) + list(xcomposer_series) + [
'mPLUG-Owl2', 'flamingov2', 'VisualGLM_6b', 'MMAlaya', 'PandaGPT_13B', 'VXVERSE'
] + list(idefics_series) + list(minigpt4_series) + list(instructblip_series),
'4.37.0': [x for x in llava_series if 'next' not in x] + list(internvl_series) + [
'TransCore_M', 'emu2_chat', 'MiniCPM-V', 'MiniCPM-V-2', 'OmniLMM_12B',
'cogvlm-grounding-generalist', 'cogvlm-chat', 'cogvlm2-llama3-chat-19B',
'mPLUG-Owl3'
] + list(xtuner_series) + list(yivl_series) + list(deepseekvl_series) + list(janus_series) + list(cambrian_series),
'4.36.2': ['Moondream1'],
'4.40.0': [
'idefics2_8b', 'Bunny-llama3-8B', 'MiniCPM-Llama3-V-2_5', '360VL-70B', 'Phi-3-Vision',
] + list(wemm_series),
'4.44.0': ['Moondream2'],
'4.45.0': ['Aria'],
'latest': ['paligemma-3b-mix-448', 'MiniCPM-V-2_6', 'glm-4v-9b'] + [x for x in llava_series if 'next' in x]
+ list(chameleon_series) + list(ovis_series) + list(mantis_series),
'api': list(api_models)
}
# SKIP_MODELS will be skipped in report_missing and run APIs
SKIP_MODELS = [
'MGM_7B', 'GPT4V_HIGH', 'GPT4V', 'flamingov2', 'PandaGPT_13B',
'GeminiProVision', 'Step1V-0701', 'SenseChat-5-Vision',
'llava_v1_7b', 'sharegpt4v_7b', 'sharegpt4v_13b',
'llava-v1.5-7b-xtuner', 'llava-v1.5-13b-xtuner',
'cogvlm-grounding-generalist', 'InternVL-Chat-V1-1',
'InternVL-Chat-V1-2', 'InternVL-Chat-V1-2-Plus', 'RekaCore',
'llava_next_72b', 'llava_next_110b', 'MiniCPM-V', 'sharecaptioner', 'XComposer',
'VisualGLM_6b', 'idefics_9b_instruct', 'idefics_80b_instruct',
'mPLUG-Owl2', 'MMAlaya', 'OmniLMM_12B', 'emu2_chat', 'VXVERSE'
] + list(minigpt4_series) + list(instructblip_series) + list(xtuner_series) + list(chameleon_series) + list(vila_series)
LARGE_MODELS = [
'idefics_80b_instruct', '360VL-70B', 'emu2_chat', 'InternVL2-76B',
]
def completed(m, d, suf):
score_file = f'outputs/{m}/{m}_{d}_{suf}'
if osp.exists(score_file):
return True
if d == 'MMBench':
s1, s2 = f'outputs/{m}/{m}_MMBench_DEV_EN_{suf}', f'outputs/{m}/{m}_MMBench_TEST_EN_{suf}'
return osp.exists(s1) and osp.exists(s2)
elif d == 'MMBench_CN':
s1, s2 = f'outputs/{m}/{m}_MMBench_DEV_CN_{suf}', f'outputs/{m}/{m}_MMBench_TEST_CN_{suf}'
return osp.exists(s1) and osp.exists(s2)
return False
def DLIST(lvl):
if lvl in dataset_levels.keys():
return [x[0] for x in dataset_levels[lvl]]
else:
from vlmeval.dataset import SUPPORTED_DATASETS
return SUPPORTED_DATASETS
def MLIST(lvl, size='all'):
if lvl == 'all':
from vlmeval.config import supported_VLM
return [x for x in supported_VLM]
model_list = models[lvl]
if size == 'small':
model_list = [m for m in model_list if m not in LARGE_MODELS]
elif size == 'large':
model_list = [m for m in model_list if m in LARGE_MODELS]
return [x[0] for x in model_list]
def MISSING(lvl):
from vlmeval.config import supported_VLM
models = list(supported_VLM)
models = [m for m in models if m not in SKIP_MODELS and osp.exists(osp.join('outputs', m))]
if lvl in dataset_levels.keys():
data_list = dataset_levels[lvl]
else:
data_list = [(D, suff) for (D, suff) in dataset_levels['l123'] if D == lvl]
missing_list = []
for f in models:
for D, suff in data_list:
if not completed(f, D, suff):
missing_list.append((f, D))
return missing_list
def CIRCULAR(inp):
def proc_str(s):
chs = set(s)
chs = [x for x in chs if x not in string.ascii_letters and x != ' ']
for ch in chs:
s = s.replace(ch, ' ')
return s
def abnormal_entry(line):
choices = {k: line[k] for k in string.ascii_uppercase if k in line and not pd.isna(line[k])}
has_label = False
for k in choices:
s = proc_str(choices[k]).split()
hit_words = [x for x in s if x in choices]
hit_words = set(hit_words)
if len(hit_words) > 1:
return True
if choices[k] in string.ascii_uppercase:
has_label = True
return has_label
assert inp.endswith('.tsv')
data = load(inp)
OFFSET = 1e6
while max(data['index']) >= OFFSET:
OFFSET *= 10
n_opt = 2
for i, ch in enumerate(string.ascii_uppercase):
if ch in data:
n_opt = ord(ch) - ord('A') + 1
else:
for j in range(i + 1, 26):
assert string.ascii_uppercase[j] not in data
groups = defaultdict(list)
for i in range(len(data)):
item = data.iloc[i]
this_n_opt = 0
for j, ch in enumerate(string.ascii_uppercase[:n_opt]):
if not pd.isna(item[ch]):
this_n_opt = j + 1
else:
for k in range(j + 1, n_opt):
assert pd.isna(item[string.ascii_uppercase[k]]), (k, item)
assert this_n_opt >= 2 or this_n_opt == 0
flag = abnormal_entry(item)
if flag or this_n_opt == 0:
groups['abnormal'].append(item)
elif len(item['answer']) > 1 or item['answer'] not in string.ascii_uppercase[:this_n_opt]:
groups['abnormal'].append(item)
else:
groups[this_n_opt].append(item)
for k in groups:
groups[k] = pd.concat(groups[k], axis=1).T
print(f'{k if k == "abnormal" else str(k) + "-choice"} records: {len(groups[k])}')
data_all = []
for k in groups:
if k == 'abnormal':
warnings.warn(
f"{len(groups['abnormal'])} abnormal entries detected. The problems can be: "
"1. Choice labels found in some choice contents; 2. No choices found for this question; "
"3. The answer is not a valid choice. Will not apply circular to those samples."
)
abdata = groups['abnormal']
abdata['g_index'] = abdata['index']
data_all.append(abdata)
else:
cir_data = []
assert isinstance(k, int) and k >= 2
labels = string.ascii_uppercase[:k]
rotates = [labels]
dq = deque(labels)
for i in range(k - 1):
dq.rotate(1)
rotates.append(list(dq))
for i, rot in enumerate(rotates):
if i == 0:
data = groups[k].copy()
data['g_index'] = data['index']
cir_data.append(data)
else:
try:
data = groups[k].copy()
data['index'] = [x + OFFSET * i for x in data['index']]
data['g_index'] = [x % OFFSET for x in data['index']]
c_map = {k: v for k, v in zip(rotates[0], rot)}
data['answer'] = [c_map[x] for x in data['answer']]
for s, t in c_map.items():
data[t] = groups[k][s]
cir_data.append(data)
except:
print(set(data['answer']))
raise NotImplementedError
data_all.append(pd.concat(cir_data))
data_all = pd.concat(data_all)
data_all['index'] = [int(x) for x in data_all['index']]
data_all['g_index'] = [int(x) for x in data_all['g_index']]
tgt_file = inp.replace('.tsv', '_circular.tsv')
dump(data_all, tgt_file)
print(f'Processed data are saved to {tgt_file}: {len(load(inp))} raw records, {len(data_all)} circularized records.')
assert osp.exists(tgt_file)
print(f'The MD5 for the circularized data is {md5(tgt_file)}')
PTH = osp.realpath(__file__)
IMAGE_PTH = osp.join(osp.dirname(PTH), '../assets/apple.jpg')
msg1 = [
IMAGE_PTH,
'What is in this image?'
]
msg2 = [
dict(type='image', value=IMAGE_PTH),
dict(type='text', value='What is in this image?')
]
msg3 = [
IMAGE_PTH,
IMAGE_PTH,
'How many apples are there in these images?'
]
msg4 = [
dict(type='image', value=IMAGE_PTH),
dict(type='image', value=IMAGE_PTH),
dict(type='text', value='How many apples are there in these images?')
]
def CHECK(val):
if val in supported_VLM:
model = supported_VLM[val]()
print(f'Model: {val}')
for i, msg in enumerate([msg1, msg2, msg3, msg4]):
if i > 1 and not model.INTERLEAVE:
continue
res = model.generate(msg)
print(f'Test {i + 1}: {res}')
elif val in models:
model_list = models[val]
for m in model_list:
CHECK(m)
def LOCALIZE(fname, new_fname=None):
if new_fname is None:
new_fname = fname.replace('.tsv', '_local.tsv')
base_name = osp.basename(fname)
dname = osp.splitext(base_name)[0]
data = load(fname)
data_new = localize_df(data, dname)
dump(data_new, new_fname)
print(f'The localized version of data file is {new_fname}')
return new_fname
def RUN(lvl, model):
import torch
NGPU = torch.cuda.device_count()
SCRIPT = osp.join(osp.dirname(__file__), '../run.py')
logger = get_logger('Run Missing')
def get_env(name):
assert name in ['433', '437', '440', 'latest']
load_env()
env_key = f'ENV_{name}'
return os.environ.get(env_key, None)
missing = MISSING(lvl)
if model == 'all':
pass
elif model == 'api':
missing = [x for x in missing if x[0] in models['api']]
elif model == 'hf':
missing = [x for x in missing if x[0] not in models['api']]
elif model in models:
missing = [x for x in missing if x[0] in models[missing]]
elif model in supported_VLM:
missing = [x for x in missing if x[0] == model]
else:
warnings.warn(f'Invalid model {model}.')
missing.sort(key=lambda x: x[0])
groups = defaultdict(list)
for m, D in missing:
groups[m].append(D)
for m in groups:
if m in SKIP_MODELS:
continue
for dataset in groups[m]:
logger.info(f'Running {m} on {dataset}')
exe = 'python' if m in LARGE_MODELS or m in models['api'] else 'torchrun'
if m not in models['api']:
env = None
env = 'latest' if m in models['latest'] else env
env = '433' if m in models['4.33.0'] else env
env = '437' if m in models['4.37.0'] else env
env = '440' if m in models['4.40.0'] else env
if env is None:
# Not found, default to latest
env = 'latest'
logger.warning(
f"Model {m} does not have a specific environment configuration. Defaulting to 'latest'.")
pth = get_env(env)
if pth is not None:
exe = osp.join(pth, 'bin', exe)
else:
logger.warning(f'Cannot find the env path {env} for model {m}')
if exe.endswith('torchrun'):
cmd = f'{exe} --nproc-per-node={NGPU} {SCRIPT} --model {m} --data {dataset}'
elif exe.endswith('python'):
cmd = f'{exe} {SCRIPT} --model {m} --data {dataset}'
os.system(cmd)
def EVAL(dataset_name, data_file, **kwargs):
from vlmeval.dataset import build_dataset
logger = get_logger('VLMEvalKit Tool-Eval')
dataset = build_dataset(dataset_name)
# Set the judge kwargs first before evaluation or dumping
judge_kwargs = {'nproc': 4, 'verbose': True}
if 'model' not in kwargs:
if dataset.TYPE in ['MCQ', 'Y/N', 'MCQ_MMMU_Pro']:
judge_kwargs['model'] = 'chatgpt-0125'
elif listinstr(['MMVet', 'LLaVABench', 'MMBench-Video'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo'
elif listinstr(['MMLongBench', 'MMDU'], dataset_name):
judge_kwargs['model'] = 'gpt-4o'
elif listinstr(['DynaMath', 'MathVerse', 'MathVista', 'MathVision'], dataset_name):
judge_kwargs['model'] = 'gpt-4o-mini'
else:
judge_kwargs['model'] = kwargs['model']
judge_kwargs['nproc'] = kwargs.get('nproc', 4)
eval_results = dataset.evaluate(data_file, **judge_kwargs)
if eval_results is not None:
assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
logger.info('Evaluation Results:')
if isinstance(eval_results, dict):
logger.info('\n' + json.dumps(eval_results, indent=4))
elif isinstance(eval_results, pd.DataFrame):
logger.info('\n')
logger.info(tabulate(eval_results.T) if len(eval_results) < len(eval_results.columns) else eval_results)
return eval_results
def parse_args_eval():
parser = argparse.ArgumentParser()
# Essential Args, Setting the Names of Datasets and Models
parser.add_argument('cmd', type=str)
parser.add_argument('data_file', type=str)
parser.add_argument('--judge', type=str, default=None)
parser.add_argument('--api-nproc', type=int, default=4)
parser.add_argument('--retry', type=int, default=None)
args = parser.parse_args()
return args
def parse_args_scan():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, nargs='+')
parser.add_argument('--data', type=str, nargs='+')
parser.add_argument('--root', type=str, default=None)
args, unknownargs = parser.parse_known_args()
return args, unknownargs
def parse_args_sync():
parser = argparse.ArgumentParser()
parser.add_argument('--src', type=str, default='/home/kenny/mmeval')
parser.add_argument('--tgt', type=str, default='/home/kenny/volc/mmeval')
parser.add_argument('--data', type=str, nargs='+')
args, unknownargs = parser.parse_known_args()
return args, unknownargs
def MERGE_PKL(pkl_dir, world_size=1):
prefs = []
for ws in list(range(1, 9)):
prefs.extend([f'{i}{ws}_' for i in range(ws)])
prefs = set(prefs)
files = os.listdir(pkl_dir)
files = [x for x in files if x[:3] in prefs]
# Merge the files
res_all = defaultdict(dict)
for f in files:
full_path = osp.join(pkl_dir, f)
key = f[3:]
res_all[key].update(load(full_path))
os.remove(full_path)
dump_prefs = [f'{i}{world_size}_' for i in range(world_size)]
for k in res_all:
for pf in dump_prefs:
dump(res_all[k], f'{pkl_dir}/{pf}{k}')
print(f'Merged {len(res_all[k])} records into {pkl_dir}/{dump_prefs[0]}{k}')
def SCAN_ONE(root, model, dataset):
from termcolor import colored
FAIL_MSG = 'Failed to obtain answer via API.'
root = osp.join(root, model)
fname = f'{model}_{dataset}.xlsx'
pth = osp.join(root, fname)
if osp.exists(pth):
data = load(pth)
# Detect Failure
assert 'prediction' in data
data['prediction'] = [str(x) for x in data['prediction']]
fail = [FAIL_MSG in x for x in data['prediction']]
if sum(fail):
nfail = sum(fail)
ntot = len(fail)
print(colored(f'Model {model} x Dataset {dataset} Inference: {nfail} out of {ntot} failed. {nfail / ntot * 100: .2f}%. ', 'light_red'))
eval_files = ls(root, match=f'{model}_{dataset}_')
eval_files = [x for x in eval_files if listinstr([f'{dataset}_openai', f'{dataset}_gpt'], x) and x.endswith('.xlsx')]
if len(eval_files) == 0:
return
for eval_file in eval_files:
data = load(eval_file)
if 'MMVet' in dataset:
bad = [x for x in data['log'] if 'All 5 retries failed.' in str(x)]
if len(bad):
print(f'Evaluation ({eval_file}): {len(bad)} out of {len(data)} failed.')
elif 'MathVista' in dataset:
bad = [x for x in data['res'] if FAIL_MSG in str(x)]
if len(bad):
print(f'Evaluation ({eval_file}): {len(bad)} out of {len(data)} failed.')
elif dataset == 'LLaVABench':
sub = data[data['gpt4_score'] == -1]
sub = sub[sub['gpt4_score'] == -1]
if len(sub):
print(f'Evaluation ({eval_file}): {len(sub)} out of {len(data)} failed.')
else:
if 'log' in data:
bad = [x for x in data['log'] if FAIL_MSG in str(x)]
if len(bad):
print(f'Evaluation ({eval_file}): {len(bad)} out of {len(data)} failed.')
else:
print(colored(f'Model {model} x Dataset {dataset} Inference Result Missing! ', 'red'))
def SCAN(root, models, datasets):
for m in models:
if not osp.exists(osp.join(root, m)):
warnings.warn(f'Model {m} not found in {root}')
continue
cur_datasets = []
if len(datasets) == 0:
for d in SUPPORTED_DATASETS:
if osp.exists(osp.join(root, m, f'{m}_{d}.xlsx')):
cur_datasets.append(d)
else:
cur_datasets = datasets
for d in cur_datasets:
SCAN_ONE(root, m, d)
def cli():
logger = get_logger('VLMEvalKit Tools')
args = sys.argv[1:]
if not args: # no arguments passed
logger.info(CLI_HELP_MSG)
return
if args[0].lower() == 'dlist':
assert len(args) >= 2
lst = DLIST(args[1])
print(' '.join(lst))
elif args[0].lower() == 'mlist':
assert len(args) >= 2
size = 'all'
if len(args) > 2:
size = args[2].lower()
lst = MLIST(args[1], size)
print('\n'.join(lst))
elif args[0].lower() == 'missing':
assert len(args) >= 2
missing_list = MISSING(args[1])
logger = get_logger('Find Missing')
logger.info(colored(f'Level {args[1]} Missing Results: ', 'red'))
lines = []
for m, D in missing_list:
line = f'Model {m}, Dataset {D}'
logger.info(colored(line, 'red'))
lines.append(line)
mwlines(lines, f'{args[1]}_missing.txt')
elif args[0].lower() == 'circular':
assert len(args) >= 2
CIRCULAR(args[1])
elif args[0].lower() == 'localize':
assert len(args) >= 2
LOCALIZE(args[1])
elif args[0].lower() == 'check':
assert len(args) >= 2
model_list = args[1:]
for m in model_list:
CHECK(m)
elif args[0].lower() == 'run':
assert len(args) >= 2
lvl = args[1]
if len(args) == 2:
model = 'all'
RUN(lvl, model)
else:
for model in args[2:]:
RUN(lvl, model)
elif args[0].lower() == 'eval':
args = parse_args_eval()
data_file = args.data_file
def extract_dataset(file_name):
fname = osp.splitext(file_name)[0].split('/')[-1]
parts = fname.split('_')
for i in range(len(parts)):
if '_'.join(parts[i:]) in SUPPORTED_DATASETS:
return '_'.join(parts[i:])
return None
dataset = extract_dataset(data_file)
assert dataset is not None, f'Cannot infer dataset name from {data_file}'
kwargs = {'nproc': args.api_nproc}
if args.judge is not None:
kwargs['model'] = args.judge
if args.retry is not None:
kwargs['retry'] = args.retry
EVAL(dataset_name=dataset, data_file=data_file, **kwargs)
elif args[0].lower() == 'merge_pkl':
assert len(args) == 3
args[2] = int(args[2])
assert args[2] in [1, 2, 4, 8]
MERGE_PKL(args[1], args[2])
elif args[0].lower() == 'scan':
args, unknownargs = parse_args_scan()
# The default value is only for the maintainer usage
root = args.root if args.root is not None else osp.join(osp.expanduser('~'), 'mmeval')
models = []
for m in args.model:
if osp.exists(m) and m.endswith('.txt'):
lines = mrlines(m)
models.extend([x.split()[0] for x in lines if len(x.split()) >= 1])
else:
models.append(m)
assert len(models)
datasets = args.data
SCAN(root, models, datasets if datasets is not None else [])
else:
logger.error('WARNING: command error!')
logger.info(CLI_HELP_MSG)
return
|