File size: 4,580 Bytes
b5beb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import json
import os
from datetime import datetime
import subprocess

# the emprical settings for each dataset
full_datasets = {
    "MathVista_MINI": "train_prompt_sampling",
    "MathVision": "train_prompt_greedy",
    "MathVerse_MINI": "train_prompt_greedy",
    "MMMU_DEV_VAL": "origin_prompt_greedy",
    "MMStar": "train_prompt_greedy",
    "DynaMath": "train_prompt_greedy",
    "WeMath": "train_prompt_greedy",
    "TextVQA_VAL": "origin_prompt_greedy",
    "DocVQA_TEST": "origin_prompt_greedy",
    "MMVet": "origin_prompt_greedy",
}

settings = {
    "train_prompt_sampling": {
        "use_reasoning_prompt": 2,
        "do_sample": True,
        "top_p": 1,
        "top_k": -1,
        "temperature": 1,
    },
    "train_prompt_greedy": {
        "use_reasoning_prompt": 2,
        "do_sample": True,
        "top_p": 0.001,
        "top_k": 1,
        "temperature": 0.01,
    },
    "origin_prompt_greedy": {
        "use_reasoning_prompt": 0,
        "do_sample": True,
        "top_p": 0.001,
        "top_k": 1,
        "temperature": 0.01,
    },
}


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--run_name", type=str, required=True, help="Name of the run")
    parser.add_argument("--gpus", type=int, default=8, help="Number of GPUs to use")
    parser.add_argument("--path", type=str, required=True, help="Path to the model")
    parser.add_argument(
        "--dataset", type=str, nargs="+", required=True, help="List of datasets to use"
    )

    parser.add_argument(
        "--min_pixels", type=int, default=3136, help="Minimum number of pixels"
    )
    parser.add_argument(
        "--max_pixels", type=int, default=12845056, help="Maximum number of pixels"
    )
    parser.add_argument(
        "--max_new_tokens", type=int, default=2048, help="Maximum number of new tokens"
    )

    args = parser.parse_args()
    assert len(args.dataset), "--dataset should be a list of datasets"

    datasets = args.dataset
    if len(args.dataset) == 1 and args.dataset[0] == "full":
        datasets = list(full_datasets.keys())

    for dataset in datasets:
        assert (
            dataset in full_datasets
        ), f"Dataset {dataset} is not in the list of available datasets: {list(full_datasets.keys())}"

    print("Datasets to be used:", datasets)
    print("Run name:", args.run_name)
    print("Number of GPUs:", args.gpus)
    print("Model path:", args.path)

    for dataset in datasets:
        config = {
            "model": {
                args.run_name: {
                    "class": "Qwen2VLChat",
                    "model_path": args.path,
                    "min_pixels": args.min_pixels,
                    "max_pixels": args.max_pixels,
                    "use_vllm": True,
                    "max_new_tokens": args.max_new_tokens,
                    **settings[full_datasets[dataset]],
                },
            },
            "datasets": datasets,
        }

        current_datetime = datetime.now().strftime("%Y%m%d")
        save_dir = f"public_eval/{args.run_name}/{dataset}/{current_datetime}"
        os.makedirs(save_dir, exist_ok=True)

        config_name = f"config.json"
        config_path = os.path.join(save_dir, config_name)
        with open(config_path, "w") as json_file:
            json.dump(config, json_file, indent=4)

        print(f"Start evaluating on {dataset}.")
        print(f"Eval config {full_datasets[dataset]}")
        
        env_vars = os.environ.copy()
        env_vars["VLLM_USE_V1"] = "0"

        command = [
            "torchrun",
            f"--nproc_per_node={args.gpus}",
            "run_for_bash.py",
            "--config",
            f"{config_path}",
            "--data",
            f"{dataset}",
            "--verbose",
            "--work-dir",
            f"{save_dir}",
        ]

        stdout_file = os.path.join(save_dir, f"{dataset}_stdout.log")
        stderr_file = os.path.join(save_dir, f"{dataset}_stderr.log")

        with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr:
            try:
                print(f"Output redirected to {stdout_file}")
                print(f"Errors redirected to {stderr_file}")
                subprocess.run(
                    command, env=env_vars, check=True, stdout=stdout, stderr=stderr
                )
                # os.symlink(source, link_name)

            except subprocess.CalledProcessError as e:
                print(f"torchrun failed. Check {stderr_file} for error details.")


if __name__ == "__main__":
    main()