Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,122 +1,19 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
split: validation
|
| 17 |
-
- path: ag_news/test.csv
|
| 18 |
-
split: test
|
| 19 |
-
- config_name: amazon_polarity
|
| 20 |
-
data_files:
|
| 21 |
-
- path: amazon_polarity/train.csv
|
| 22 |
-
split: train
|
| 23 |
-
- path: amazon_polarity/validation.csv
|
| 24 |
-
split: validation
|
| 25 |
-
- path: amazon_polarity/test.csv
|
| 26 |
-
split: test
|
| 27 |
-
- config_name: banking77
|
| 28 |
-
data_files:
|
| 29 |
-
- split: train
|
| 30 |
-
path: banking77/train-*
|
| 31 |
-
- split: test
|
| 32 |
-
path: banking77/test-*
|
| 33 |
-
- split: validation
|
| 34 |
-
path: banking77/validation-*
|
| 35 |
-
- config_name: emotion
|
| 36 |
-
data_files:
|
| 37 |
-
- path: emotion/train.csv
|
| 38 |
-
split: train
|
| 39 |
-
- path: emotion/validation.csv
|
| 40 |
-
split: validation
|
| 41 |
-
- path: emotion/test.csv
|
| 42 |
-
split: test
|
| 43 |
-
- config_name: imdb
|
| 44 |
-
data_files:
|
| 45 |
-
- path: imdb/train.csv
|
| 46 |
-
split: train
|
| 47 |
-
- path: imdb/validation.csv
|
| 48 |
-
split: validation
|
| 49 |
-
- path: imdb/test.csv
|
| 50 |
-
split: test
|
| 51 |
-
- config_name: trec
|
| 52 |
-
data_files:
|
| 53 |
-
- split: train
|
| 54 |
-
path: trec/train-*
|
| 55 |
-
- split: test
|
| 56 |
-
path: trec/test-*
|
| 57 |
-
- split: validation
|
| 58 |
-
path: trec/validation-*
|
| 59 |
-
- config_name: twenty_newsgroups
|
| 60 |
-
data_files:
|
| 61 |
-
- path: twenty_newsgroups/train.csv
|
| 62 |
-
split: train
|
| 63 |
-
- path: twenty_newsgroups/validation.csv
|
| 64 |
-
split: validation
|
| 65 |
-
- path: twenty_newsgroups/test.csv
|
| 66 |
-
split: test
|
| 67 |
-
- config_name: yelp_polarity
|
| 68 |
-
data_files:
|
| 69 |
-
- path: yelp_polarity/train.csv
|
| 70 |
-
split: train
|
| 71 |
-
- path: yelp_polarity/validation.csv
|
| 72 |
-
split: validation
|
| 73 |
-
- path: yelp_polarity/test.csv
|
| 74 |
-
split: test
|
| 75 |
dataset_info:
|
| 76 |
-
- config_name: MASSIVE
|
| 77 |
-
features:
|
| 78 |
-
- name: text
|
| 79 |
-
dtype: string
|
| 80 |
-
- name: label
|
| 81 |
-
dtype: int64
|
| 82 |
-
splits:
|
| 83 |
-
- name: train
|
| 84 |
-
num_bytes: 541604
|
| 85 |
-
num_examples: 11514
|
| 86 |
-
- name: validation
|
| 87 |
-
num_bytes: 95125
|
| 88 |
-
num_examples: 2033
|
| 89 |
-
- name: test
|
| 90 |
-
num_bytes: 138473
|
| 91 |
-
num_examples: 2974
|
| 92 |
-
download_size: 379162
|
| 93 |
-
dataset_size: 775202
|
| 94 |
-
- config_name: ag_news
|
| 95 |
-
features:
|
| 96 |
-
- dtype: string
|
| 97 |
-
name: text
|
| 98 |
-
- dtype: int64
|
| 99 |
-
name: label
|
| 100 |
-
splits:
|
| 101 |
-
- name: train
|
| 102 |
-
num_examples: 90000
|
| 103 |
-
- name: validation
|
| 104 |
-
num_examples: 30000
|
| 105 |
-
- name: test
|
| 106 |
-
num_examples: 7600
|
| 107 |
-
- config_name: amazon_polarity
|
| 108 |
-
features:
|
| 109 |
-
- dtype: string
|
| 110 |
-
name: text
|
| 111 |
-
- dtype: int64
|
| 112 |
-
name: label
|
| 113 |
-
splits:
|
| 114 |
-
- name: train
|
| 115 |
-
num_examples: 2700000
|
| 116 |
-
- name: validation
|
| 117 |
-
num_examples: 900000
|
| 118 |
-
- name: test
|
| 119 |
-
num_examples: 400000
|
| 120 |
- config_name: banking77
|
| 121 |
features:
|
| 122 |
- name: text
|
|
@@ -125,42 +22,11 @@ dataset_info:
|
|
| 125 |
dtype: int64
|
| 126 |
splits:
|
| 127 |
- name: train
|
| 128 |
-
num_bytes: 535404
|
| 129 |
num_examples: 7502
|
| 130 |
- name: test
|
| 131 |
-
num_bytes: 204010
|
| 132 |
num_examples: 3080
|
| 133 |
- name: validation
|
| 134 |
-
num_bytes: 179624
|
| 135 |
num_examples: 2501
|
| 136 |
-
download_size: 452800
|
| 137 |
-
dataset_size: 919038
|
| 138 |
-
- config_name: emotion
|
| 139 |
-
features:
|
| 140 |
-
- dtype: string
|
| 141 |
-
name: text
|
| 142 |
-
- dtype: int64
|
| 143 |
-
name: label
|
| 144 |
-
splits:
|
| 145 |
-
- name: train
|
| 146 |
-
num_examples: 250085
|
| 147 |
-
- name: validation
|
| 148 |
-
num_examples: 83362
|
| 149 |
-
- name: test
|
| 150 |
-
num_examples: 41681
|
| 151 |
-
- config_name: imdb
|
| 152 |
-
features:
|
| 153 |
-
- dtype: string
|
| 154 |
-
name: text
|
| 155 |
-
- dtype: int64
|
| 156 |
-
name: label
|
| 157 |
-
splits:
|
| 158 |
-
- name: train
|
| 159 |
-
num_examples: 18750
|
| 160 |
-
- name: validation
|
| 161 |
-
num_examples: 6250
|
| 162 |
-
- name: test
|
| 163 |
-
num_examples: 25000
|
| 164 |
- config_name: trec
|
| 165 |
features:
|
| 166 |
- name: text
|
|
@@ -169,265 +35,118 @@ dataset_info:
|
|
| 169 |
dtype: int64
|
| 170 |
splits:
|
| 171 |
- name: train
|
| 172 |
-
num_bytes: 255609
|
| 173 |
num_examples: 4089
|
| 174 |
- name: test
|
| 175 |
-
num_bytes: 23979
|
| 176 |
num_examples: 500
|
| 177 |
- name: validation
|
| 178 |
-
num_bytes: 85861
|
| 179 |
num_examples: 1363
|
| 180 |
-
|
| 181 |
-
dataset_size: 365449
|
| 182 |
-
- config_name: twenty_newsgroups
|
| 183 |
features:
|
| 184 |
-
-
|
| 185 |
-
|
| 186 |
-
-
|
| 187 |
-
|
| 188 |
splits:
|
| 189 |
- name: train
|
| 190 |
-
num_examples:
|
| 191 |
-
- name: validation
|
| 192 |
-
num_examples: 2829
|
| 193 |
- name: test
|
| 194 |
-
num_examples:
|
| 195 |
-
-
|
|
|
|
|
|
|
| 196 |
features:
|
| 197 |
-
-
|
| 198 |
-
|
| 199 |
-
-
|
| 200 |
-
|
| 201 |
splits:
|
| 202 |
- name: train
|
| 203 |
-
num_examples:
|
| 204 |
-
- name: validation
|
| 205 |
-
num_examples: 140000
|
| 206 |
- name: test
|
| 207 |
-
num_examples:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
-
|
| 214 |
-
|
| 215 |
-
-
|
| 216 |
-
-
|
| 217 |
-
-
|
| 218 |
-
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
---
|
| 222 |
-
|
| 223 |
# Data Preprocessing AutoML Benchmarks
|
| 224 |
|
| 225 |
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
|
| 226 |
|
| 227 |
-
## Dataset Categories
|
| 228 |
-
|
| 229 |
-
### Redundancy Issues
|
| 230 |
-
- **ag_news**: News categorization with topic overlap
|
| 231 |
-
- **twenty_newsgroups**: Newsgroup posts with cross-posting
|
| 232 |
-
|
| 233 |
-
### Class Imbalance Issues
|
| 234 |
-
- **yelp_polarity**: Sentiment analysis with rating bias
|
| 235 |
-
|
| 236 |
-
### Label Noise Issues
|
| 237 |
-
- **imdb**: Movie reviews with subjective labels
|
| 238 |
-
- **amazon_polarity**: Product reviews with rating inconsistencies
|
| 239 |
-
|
| 240 |
-
### Outlier Issues
|
| 241 |
-
- **emotion**: Twitter emotion with length outliers
|
| 242 |
-
|
| 243 |
-
## Dataset Structure
|
| 244 |
-
|
| 245 |
-
Each dataset contains:
|
| 246 |
-
- `train.csv`: Training split (~75% of original training data)
|
| 247 |
-
- `validation.csv`: Validation split (~25% of original training data)
|
| 248 |
-
- `test.csv`: Test split (original test set preserved)
|
| 249 |
-
|
| 250 |
-
All datasets have consistent columns:
|
| 251 |
-
- `text`: Input text
|
| 252 |
-
- `label`: Target label (integer encoded)
|
| 253 |
-
|
| 254 |
-
**Important**: Original test sets are preserved to maintain methodological integrity and enable comparison with published benchmarks.
|
| 255 |
-
|
| 256 |
## Usage
|
| 257 |
|
|
|
|
|
|
|
| 258 |
```python
|
| 259 |
from datasets import load_dataset
|
| 260 |
|
| 261 |
-
#
|
| 262 |
-
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "
|
| 263 |
-
|
| 264 |
-
# Access splits
|
| 265 |
-
train_data = dataset["train"]
|
| 266 |
-
val_data = dataset["validation"]
|
| 267 |
-
test_data = dataset["test"]
|
| 268 |
```
|
| 269 |
|
| 270 |
-
##
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
quality_issues:
|
| 306 |
-
- label_noise
|
| 307 |
-
- rating_inconsistency
|
| 308 |
-
target_column: label
|
| 309 |
-
task_type: binary_classification
|
| 310 |
-
test_samples: 400000
|
| 311 |
-
text_columns:
|
| 312 |
-
- text
|
| 313 |
-
total_samples: 4000000
|
| 314 |
-
train_samples: 2700000
|
| 315 |
-
validation_samples: 900000
|
| 316 |
-
emotion:
|
| 317 |
-
class_names:
|
| 318 |
-
- sadness
|
| 319 |
-
- joy
|
| 320 |
-
- love
|
| 321 |
-
- anger
|
| 322 |
-
- fear
|
| 323 |
-
- surprise
|
| 324 |
-
description: Twitter emotion classification with text length outliers
|
| 325 |
-
name: Emotion Classification
|
| 326 |
-
num_classes: 6
|
| 327 |
-
original_test_samples: 41681
|
| 328 |
-
original_train_samples: 333447
|
| 329 |
-
quality_issues:
|
| 330 |
-
- length_outliers
|
| 331 |
-
- text_anomalies
|
| 332 |
-
target_column: label
|
| 333 |
-
task_type: multi_classification
|
| 334 |
-
test_samples: 41681
|
| 335 |
-
text_columns:
|
| 336 |
-
- text
|
| 337 |
-
total_samples: 375128
|
| 338 |
-
train_samples: 250085
|
| 339 |
-
validation_samples: 83362
|
| 340 |
-
imdb:
|
| 341 |
-
class_names:
|
| 342 |
-
- negative
|
| 343 |
-
- positive
|
| 344 |
-
description: Movie reviews with subjective sentiment labels and borderline cases
|
| 345 |
-
name: IMDB Movie Reviews
|
| 346 |
-
num_classes: 2
|
| 347 |
-
original_test_samples: 25000
|
| 348 |
-
original_train_samples: 25000
|
| 349 |
-
quality_issues:
|
| 350 |
-
- label_noise
|
| 351 |
-
- subjective_labels
|
| 352 |
-
- borderline_cases
|
| 353 |
-
target_column: label
|
| 354 |
-
task_type: binary_classification
|
| 355 |
-
test_samples: 25000
|
| 356 |
-
text_columns:
|
| 357 |
-
- text
|
| 358 |
-
total_samples: 50000
|
| 359 |
-
train_samples: 18750
|
| 360 |
-
validation_samples: 6250
|
| 361 |
-
twenty_newsgroups:
|
| 362 |
-
class_names:
|
| 363 |
-
- alt.atheism
|
| 364 |
-
- comp.graphics
|
| 365 |
-
- comp.os.ms-windows.misc
|
| 366 |
-
- comp.sys.ibm.pc.hardware
|
| 367 |
-
- comp.sys.mac.hardware
|
| 368 |
-
- comp.windows.x
|
| 369 |
-
- misc.forsale
|
| 370 |
-
- rec.autos
|
| 371 |
-
- rec.motorcycles
|
| 372 |
-
- rec.sport.baseball
|
| 373 |
-
- rec.sport.hockey
|
| 374 |
-
- sci.crypt
|
| 375 |
-
- sci.electronics
|
| 376 |
-
- sci.med
|
| 377 |
-
- sci.space
|
| 378 |
-
- soc.religion.christian
|
| 379 |
-
- talk.politics.guns
|
| 380 |
-
- talk.politics.mideast
|
| 381 |
-
- talk.politics.misc
|
| 382 |
-
- talk.religion.misc
|
| 383 |
-
description: Newsgroup posts with overlapping topics and cross-posting
|
| 384 |
-
name: 20 Newsgroups
|
| 385 |
-
num_classes: 20
|
| 386 |
-
original_test_samples: 7532
|
| 387 |
-
original_train_samples: 11314
|
| 388 |
-
quality_issues:
|
| 389 |
-
- redundancy
|
| 390 |
-
- cross_posting
|
| 391 |
-
- similar_topics
|
| 392 |
-
target_column: label
|
| 393 |
-
task_type: multi_classification
|
| 394 |
-
test_samples: 7532
|
| 395 |
-
text_columns:
|
| 396 |
-
- text
|
| 397 |
-
total_samples: 18846
|
| 398 |
-
train_samples: 8485
|
| 399 |
-
validation_samples: 2829
|
| 400 |
-
yelp_polarity:
|
| 401 |
-
class_names:
|
| 402 |
-
- negative
|
| 403 |
-
- positive
|
| 404 |
-
description: Yelp reviews with positive/negative sentiment, naturally imbalanced
|
| 405 |
-
name: Yelp Review Polarity
|
| 406 |
-
num_classes: 2
|
| 407 |
-
original_test_samples: 38000
|
| 408 |
-
original_train_samples: 560000
|
| 409 |
-
quality_issues:
|
| 410 |
-
- moderate_imbalance
|
| 411 |
-
- rating_bias
|
| 412 |
-
target_column: label
|
| 413 |
-
task_type: binary_classification
|
| 414 |
-
test_samples: 38000
|
| 415 |
-
text_columns:
|
| 416 |
-
- text
|
| 417 |
-
total_samples: 598000
|
| 418 |
-
train_samples: 420000
|
| 419 |
-
validation_samples: 140000
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
## Citation
|
| 423 |
-
|
| 424 |
-
If you use these datasets in your research, please cite the original sources and this collection:
|
| 425 |
-
|
| 426 |
-
```bibtex
|
| 427 |
-
@misc{mothmalone2024preprocessing,
|
| 428 |
-
title={Data Preprocessing AutoML Benchmarks},
|
| 429 |
-
author={MothMalone},
|
| 430 |
-
year={2024},
|
| 431 |
-
url={https://huggingface.co/datasets/MothMalone/data-preprocessing-automl-benchmarks}
|
| 432 |
-
}
|
| 433 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- data-preprocessing
|
| 9 |
+
- automl
|
| 10 |
+
- benchmarks
|
| 11 |
+
size_categories:
|
| 12 |
+
- n<1K
|
| 13 |
+
- 1K<n<10K
|
| 14 |
+
- 10K<n<100K
|
| 15 |
+
- 100K<n<1M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
- config_name: banking77
|
| 18 |
features:
|
| 19 |
- name: text
|
|
|
|
| 22 |
dtype: int64
|
| 23 |
splits:
|
| 24 |
- name: train
|
|
|
|
| 25 |
num_examples: 7502
|
| 26 |
- name: test
|
|
|
|
| 27 |
num_examples: 3080
|
| 28 |
- name: validation
|
|
|
|
| 29 |
num_examples: 2501
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
- config_name: trec
|
| 31 |
features:
|
| 32 |
- name: text
|
|
|
|
| 35 |
dtype: int64
|
| 36 |
splits:
|
| 37 |
- name: train
|
|
|
|
| 38 |
num_examples: 4089
|
| 39 |
- name: test
|
|
|
|
| 40 |
num_examples: 500
|
| 41 |
- name: validation
|
|
|
|
| 42 |
num_examples: 1363
|
| 43 |
+
- config_name: financial_phrasebank
|
|
|
|
|
|
|
| 44 |
features:
|
| 45 |
+
- name: text
|
| 46 |
+
dtype: string
|
| 47 |
+
- name: label
|
| 48 |
+
dtype: int64
|
| 49 |
splits:
|
| 50 |
- name: train
|
| 51 |
+
num_examples: 1698
|
|
|
|
|
|
|
| 52 |
- name: test
|
| 53 |
+
num_examples: 0
|
| 54 |
+
- name: validation
|
| 55 |
+
num_examples: 566
|
| 56 |
+
- config_name: MASSIVE
|
| 57 |
features:
|
| 58 |
+
- name: text
|
| 59 |
+
dtype: string
|
| 60 |
+
- name: label
|
| 61 |
+
dtype: int64
|
| 62 |
splits:
|
| 63 |
- name: train
|
| 64 |
+
num_examples: 11514
|
|
|
|
|
|
|
| 65 |
- name: test
|
| 66 |
+
num_examples: 2974
|
| 67 |
+
- name: validation
|
| 68 |
+
num_examples: 2033
|
| 69 |
+
configs:
|
| 70 |
+
- config_name: banking77
|
| 71 |
+
data_files:
|
| 72 |
+
- split: train
|
| 73 |
+
path: data/banking77-train.parquet
|
| 74 |
+
- split: test
|
| 75 |
+
path: data/banking77-test.parquet
|
| 76 |
+
- split: validation
|
| 77 |
+
path: data/banking77-validation.parquet
|
| 78 |
+
- config_name: trec
|
| 79 |
+
data_files:
|
| 80 |
+
- split: train
|
| 81 |
+
path: data/trec-train.parquet
|
| 82 |
+
- split: test
|
| 83 |
+
path: data/trec-test.parquet
|
| 84 |
+
- split: validation
|
| 85 |
+
path: data/trec-validation.parquet
|
| 86 |
+
- config_name: financial_phrasebank
|
| 87 |
+
data_files:
|
| 88 |
+
- split: train
|
| 89 |
+
path: data/financial_phrasebank-train.parquet
|
| 90 |
+
- split: test
|
| 91 |
+
path: data/financial_phrasebank-test.parquet
|
| 92 |
+
- split: validation
|
| 93 |
+
path: data/financial_phrasebank-validation.parquet
|
| 94 |
+
- config_name: MASSIVE
|
| 95 |
+
data_files:
|
| 96 |
+
- split: train
|
| 97 |
+
path: data/MASSIVE-train.parquet
|
| 98 |
+
- split: test
|
| 99 |
+
path: data/MASSIVE-test.parquet
|
| 100 |
+
- split: validation
|
| 101 |
+
path: data/MASSIVE-validation.parquet
|
| 102 |
---
|
|
|
|
| 103 |
# Data Preprocessing AutoML Benchmarks
|
| 104 |
|
| 105 |
This repository contains text classification datasets with known data quality issues for preprocessing research in AutoML.
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
## Usage
|
| 108 |
|
| 109 |
+
Load a specific dataset configuration like this:
|
| 110 |
+
|
| 111 |
```python
|
| 112 |
from datasets import load_dataset
|
| 113 |
|
| 114 |
+
# Example for loading the TREC dataset
|
| 115 |
+
dataset = load_dataset("MothMalone/data-preprocessing-automl-benchmarks", "trec")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
```
|
| 117 |
|
| 118 |
+
## Available Datasets
|
| 119 |
+
|
| 120 |
+
Below are the details for each dataset configuration available in this repository.
|
| 121 |
+
|
| 122 |
+
### banking77
|
| 123 |
+
- Description:
|
| 124 |
+
- Data Quality Issue: N/A
|
| 125 |
+
- Classes: 77
|
| 126 |
+
- Training Samples: 7502
|
| 127 |
+
- Validation Samples: 2501
|
| 128 |
+
- Test Samples: 3080
|
| 129 |
+
|
| 130 |
+
### trec
|
| 131 |
+
- Description: The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set.
|
| 132 |
+
- Data Quality Issue: N/A
|
| 133 |
+
- Classes: 6
|
| 134 |
+
- Training Samples: 4089
|
| 135 |
+
- Validation Samples: 1363
|
| 136 |
+
- Test Samples: 500
|
| 137 |
+
|
| 138 |
+
### financial_phrasebank
|
| 139 |
+
- Description: The key arguments for the low utilization of statistical techniques in
|
| 140 |
+
- Data Quality Issue: N/A
|
| 141 |
+
- Classes: 3
|
| 142 |
+
- Training Samples: 1698
|
| 143 |
+
- Validation Samples: 566
|
| 144 |
+
- Test Samples: 0
|
| 145 |
+
|
| 146 |
+
### MASSIVE
|
| 147 |
+
- Description:
|
| 148 |
+
- Data Quality Issue: N/A
|
| 149 |
+
- Classes: 60
|
| 150 |
+
- Training Samples: 11514
|
| 151 |
+
- Validation Samples: 2033
|
| 152 |
+
- Test Samples: 2974
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|