Delete merge_lora_weights.py
Browse files- merge_lora_weights.py +0 -150
merge_lora_weights.py
DELETED
|
@@ -1,150 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import glob
|
| 3 |
-
import os
|
| 4 |
-
import sys
|
| 5 |
-
|
| 6 |
-
import cv2
|
| 7 |
-
import numpy as np
|
| 8 |
-
import torch
|
| 9 |
-
import torch.nn.functional as F
|
| 10 |
-
import transformers
|
| 11 |
-
from peft import LoraConfig, get_peft_model
|
| 12 |
-
from transformers import AutoTokenizer
|
| 13 |
-
|
| 14 |
-
from model.VISA_multiseg import VrshqForCausalLM
|
| 15 |
-
# from utils.utils import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN
|
| 16 |
-
|
| 17 |
-
"""
|
| 18 |
-
python merge_lora_weights_and_save_hf_model.py \
|
| 19 |
-
--version /mnt/nlp-ali/usr/yancilin/clyan-data-2/video-llm/Chat-UniVi/Chat-UniVi \
|
| 20 |
-
--weight /mnt/public03/dataset/ovis/rgvos/visa7b/ckpt_model/pytorch_model15000.bin \
|
| 21 |
-
--save_path /mnt/public03/dataset/ovis/rgvos/visa7b/ckpt_model/hf_model
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
DEFAULT_IM_START_TOKEN = "<im_start>"
|
| 25 |
-
DEFAULT_IM_END_TOKEN = "<im_end>"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def parse_args(args):
|
| 29 |
-
parser = argparse.ArgumentParser(description="merge lora weights and save model with hf format")
|
| 30 |
-
parser.add_argument("--version", default="chat_univi", type=str) # path to chatunivi
|
| 31 |
-
parser.add_argument("--weight", default="/18515601223/segment-anything-2/runs/VISA-SAM2-MULTISEG-0.1/pytorch_model.bin", type=str) # path to your checkpoints
|
| 32 |
-
parser.add_argument("--save_path", default="/18515601223/segment-anything-2/save_weights_multiseg_0.1_bf16", type=str)
|
| 33 |
-
parser.add_argument("--precision", default="bf16", type=str, choices=["fp32", "bf16", "fp16"], help="precision for inference")
|
| 34 |
-
parser.add_argument("--out_dim", default=256, type=int)
|
| 35 |
-
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
| 36 |
-
parser.add_argument("--model_max_length", default=2048, type=int)
|
| 37 |
-
parser.add_argument("--vision_tower", default="openai/clip-vit-large-patch14", type=str)
|
| 38 |
-
parser.add_argument("--lora_r", default=8, type=int)
|
| 39 |
-
parser.add_argument("--lora_alpha", default=16, type=int)
|
| 40 |
-
parser.add_argument("--lora_dropout", default=0.05, type=float)
|
| 41 |
-
parser.add_argument("--lora_target_modules", default="q_proj,v_proj", type=str)
|
| 42 |
-
parser.add_argument("--local_rank", default=0, type=int, help="node rank")
|
| 43 |
-
parser.add_argument("--train_mask_decoder", action="store_true", default=True)
|
| 44 |
-
parser.add_argument("--use_mm_start_end", action="store_true", default=False)
|
| 45 |
-
parser.add_argument("--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"])
|
| 46 |
-
parser.add_argument("--alpha", default=0.1, type=float)
|
| 47 |
-
return parser.parse_args(args)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def main(args):
|
| 51 |
-
args = parse_args(args)
|
| 52 |
-
|
| 53 |
-
# Create model
|
| 54 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 55 |
-
pretrained_model_name_or_path=args.version,
|
| 56 |
-
cache_dir=None,
|
| 57 |
-
model_max_length=args.model_max_length,
|
| 58 |
-
padding_side="right",
|
| 59 |
-
use_fast=False,
|
| 60 |
-
)
|
| 61 |
-
tokenizer.pad_token = tokenizer.unk_token
|
| 62 |
-
num_added_tokens = tokenizer.add_tokens("[SEG]")
|
| 63 |
-
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[-1]
|
| 64 |
-
|
| 65 |
-
num_added_tokens = tokenizer.add_tokens("[TAK]")
|
| 66 |
-
args.track_token_idx = tokenizer("[TAK]", add_special_tokens=False).input_ids[-1]
|
| 67 |
-
|
| 68 |
-
if args.use_mm_start_end:
|
| 69 |
-
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
| 70 |
-
|
| 71 |
-
model_args = {
|
| 72 |
-
"train_mask_decoder": args.train_mask_decoder,
|
| 73 |
-
"out_dim": args.out_dim,
|
| 74 |
-
"seg_token_idx": args.seg_token_idx,
|
| 75 |
-
"vision_tower": args.vision_tower,
|
| 76 |
-
"track_token_idx": args.track_token_idx,
|
| 77 |
-
"seg_token_num": 1,
|
| 78 |
-
"alpha": args.alpha,
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
torch_dtype = torch.float32
|
| 82 |
-
if args.precision == "bf16":
|
| 83 |
-
torch_dtype = torch.bfloat16
|
| 84 |
-
elif args.precision == "fp16":
|
| 85 |
-
torch_dtype = torch.half
|
| 86 |
-
model = VrshqForCausalLM.from_pretrained(pretrained_model_name_or_path=args.version, torch_dtype=torch_dtype,
|
| 87 |
-
**model_args)
|
| 88 |
-
model.config.eos_token_id = tokenizer.eos_token_id
|
| 89 |
-
model.config.bos_token_id = tokenizer.bos_token_id
|
| 90 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
| 91 |
-
|
| 92 |
-
# 加载clip预训练模型
|
| 93 |
-
model.get_model().initialize_vision_modules(model.get_model().config)
|
| 94 |
-
vision_tower = model.get_model().get_vision_tower()
|
| 95 |
-
vision_tower.to(dtype=torch_dtype)
|
| 96 |
-
model.get_model().initialize_lisa_modules(model.get_model().config)
|
| 97 |
-
|
| 98 |
-
lora_r = args.lora_r
|
| 99 |
-
if lora_r > 0:
|
| 100 |
-
|
| 101 |
-
def find_linear_layers(model, lora_target_modules):
|
| 102 |
-
cls = torch.nn.Linear
|
| 103 |
-
lora_module_names = set()
|
| 104 |
-
for name, module in model.named_modules():
|
| 105 |
-
if (
|
| 106 |
-
isinstance(module, cls)
|
| 107 |
-
and all(
|
| 108 |
-
[x not in name for x in ["visual_model", "vision_tower", "mm_projector", "text_hidden_fcs"]])
|
| 109 |
-
and any([x in name for x in lora_target_modules])
|
| 110 |
-
):
|
| 111 |
-
lora_module_names.add(name)
|
| 112 |
-
return sorted(list(lora_module_names))
|
| 113 |
-
|
| 114 |
-
lora_alpha = args.lora_alpha
|
| 115 |
-
lora_dropout = args.lora_dropout
|
| 116 |
-
lora_target_modules = find_linear_layers(model, args.lora_target_modules.split(","), )
|
| 117 |
-
lora_config = LoraConfig(
|
| 118 |
-
r=lora_r,
|
| 119 |
-
lora_alpha=lora_alpha,
|
| 120 |
-
target_modules=lora_target_modules,
|
| 121 |
-
lora_dropout=lora_dropout,
|
| 122 |
-
bias="none",
|
| 123 |
-
task_type="CAUSAL_LM",
|
| 124 |
-
)
|
| 125 |
-
model = get_peft_model(model, lora_config)
|
| 126 |
-
model.print_trainable_parameters()
|
| 127 |
-
|
| 128 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 129 |
-
|
| 130 |
-
# for key in model.state_dict().keys():
|
| 131 |
-
# print(key)
|
| 132 |
-
|
| 133 |
-
state_dict = torch.load(args.weight, map_location="cpu")
|
| 134 |
-
model.load_state_dict(state_dict, strict=True)
|
| 135 |
-
|
| 136 |
-
model = model.merge_and_unload()
|
| 137 |
-
state_dict = {}
|
| 138 |
-
for k, v in model.state_dict().items(): # 过滤掉clip vision encoder中的参数
|
| 139 |
-
if "vision_tower" not in k:
|
| 140 |
-
state_dict[k] = v
|
| 141 |
-
if "clip_model" not in k:
|
| 142 |
-
state_dict[k] = v
|
| 143 |
-
else:
|
| 144 |
-
pass
|
| 145 |
-
model.save_pretrained(args.save_path, state_dict=state_dict)
|
| 146 |
-
tokenizer.save_pretrained(args.save_path)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
if __name__ == "__main__":
|
| 150 |
-
main(sys.argv[1:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|