Dataset Viewer
Auto-converted to Parquet Duplicate
id
int64
2
1.05M
Unique ID
int64
2
2.73M
Rider_ID
int64
1k
10k
Formula_category_x
stringclasses
3 values
Len_Circuit_inkm
float64
3.5
5.9
Laps
int64
18
25
Start_Position
int64
1
22
Formula_Avg_Speed_kmh
float64
150
350
Formula_Track_Condition
stringclasses
2 values
Humidity_%
int64
30
89
Tire_Compound
stringclasses
3 values
Penalty
stringclasses
5 values
Champ_Points
int64
0
349
Champ_Position
int64
1
24
Session
stringclasses
7 values
race_year
int64
1.95k
2.02k
seq
int64
1
19
position
int64
-5
40
points
float64
0
25
Formula_shortname
stringclasses
53 values
circuit_name
stringclasses
70 values
Corners_in_Lap
int64
10
25
Tire_Degradation_Factor_per_Lap
float64
0
0.01
Pit_Stop_Duration_Seconds
float64
2
5
Ambient_Temperature_Celsius
float64
15
35
Track_Temperature_Celsius
float64
15.1
50
weather
stringclasses
5 values
track
stringclasses
2 values
air
int64
12
36
ground
int64
12
54
starts
int64
1
406
finishes
int64
0
373
with_points
int64
0
365
podiums
int64
0
178
wins
int64
0
118
Lap_Time_Seconds
float64
70
110
618,350
2,242,571
5,773
Formula1
4.772
18
19
305.58
Wet
41
Soft
Ride Through
26
10
FP3
2,006
2
5
11
QAT
Losail
12
0.0021
4.37
27.9
34.5
Cloudy
Dry
22
23
163
144
140
62
45
76.821
766,115
2,345,358
8,494
Formula1
4.768
23
5
344.2
Wet
85
Hard
DNF
23
13
FP3
2,007
7
7
9
CAT
Catalunya
15
0.0008
4.61
15.5
18.1
Cloudy
Dry
22
31
172
154
139
17
9
97.333
1,045,427
1,637,269
7,697
Formula2
3.779
25
6
224.12
Wet
48
Medium
+5s
18
6
FP2
1,988
12
2
17
GBR
Donington Park
18
0.0038
2.56
17.9
25
Cloudy
Dry
17
24
74
68
51
8
4
92.671
415,738
898,164
8,788
Formula1
3.606
19
21
191.81
Dry
58
Medium
DNS
289
2
FP4
2,009
7
-4
0
NED
Assen
15
0.0018
4.73
28
41.9
Cloudy
Dry
22
31
29
19
16
2
1
74.336
473,061
1,513,809
2,424
Formula2
4.58
20
11
275.08
Wet
71
Soft
DNF
247
15
FP3
1,993
6
6
10
GER
Hockenheim
12
0.0045
3.28
25.7
31.7
Sunny
Dry
16
19
75
71
62
22
9
108.13
353,209
24,176
4,766
Formula1
5.292
24
9
249.93
Dry
57
Hard
+5s
50
5
Qualifying
2,020
12
17
0
TER
Aragón
16
0.0008
2.1
16.1
23.8
Cloudy
Dry
17
24
31
23
12
0
0
98.082
495,085
855,541
6,076
Formula2
5.02
22
18
211.86
Wet
46
Hard
Ride Through
38
9
FP3
2,013
11
18
0
CZE
Brno
22
0.0006
3.73
23.3
24.6
Sunny
Dry
26
35
37
31
4
0
0
95.854
1,003,608
2,499,537
2,593
Formula2
5.048
20
18
243.89
Wet
65
Soft
null
258
21
Qualifying
2,018
13
4
13
RSM
Misano
11
0.0014
3.26
33.5
38.2
Sunny
Dry
21
31
116
73
50
0
0
90.365
914,827
2,699,775
6,050
Formula2
4.773
20
22
151.94
Wet
72
Soft
Ride Through
32
16
Qualifying
1,991
6
4
13
GER
Hockenheim
14
0.0028
4.71
26.9
29.9
Sunny
Dry
16
19
76
74
38
1
0
72.007
205,990
518,229
7,416
Formula1
3.8
19
14
165.8
Dry
32
Soft
DNS
234
4
Qualifying
1,991
5
12
4
ITA
Misano
10
0.0021
2.97
23.1
34
Partly cloudy
Dry
26
40
14
13
3
0
0
99.382
173,825
1,084,649
4,166
Formula3
4.593
21
9
323.77
Wet
37
Hard
DNF
154
13
Sprint
2,019
16
12
4
JPN
Motegi
16
0.0029
2.26
21.6
30.6
Clear
Dry
23
35
175
146
132
29
17
90.55
847,448
1,217,440
3,244
Formula3
4.049
24
18
256.08
Dry
68
Medium
+3s
126
14
FP2
1,956
3
6
1
BEL
Spa-Francorchamps
14
0.0036
3.08
32.9
36.7
Partly cloudy
Dry
21
21
3
3
3
0
0
106.431
507,794
396,951
3,179
Formula1
4.485
24
7
245.4
Dry
44
Soft
+3s
130
16
Sprint
2,011
6
-2
0
GBR
Silverstone
16
0.0043
2.61
30.8
38.7
Sunny
Dry
16
19
16
5
2
0
0
81.19
44,333
1,172,004
4,651
Formula2
5.812
18
6
271.97
Dry
47
Medium
+5s
2
22
Race
2,013
14
-1
0
ARA
Aragón
18
0.0013
3.99
33.6
46.4
Sunny
Dry
36
48
33
24
8
0
0
90.703
212,340
584,978
7,564
Formula3
4.963
22
20
191.89
Wet
68
Medium
DNS
98
20
Race
2,012
12
11
5
CZE
Brno
14
0.0014
2.82
18
31.6
Cloudy
Dry
17
24
222
201
178
30
17
108.163
258,839
1,705,960
4,711
Formula2
5.701
25
17
212.61
Wet
70
Soft
null
37
8
FP3
2,011
7
-1
0
NED
Assen
10
0.0038
3.43
24
36.4
Cloudy
Dry
22
31
228
180
167
13
5
86.987
862,665
1,948,594
4,677
Formula1
4.988
19
7
302.98
Dry
84
Medium
+5s
185
10
Race
2,002
14
15
1
MAL
Sepang
13
0.0009
3.92
27.6
30.3
Sunny
Dry
36
48
320
290
285
62
23
100.547
283,231
1,889,944
4,777
Formula1
4.887
18
14
216.57
Wet
54
Hard
+5s
95
18
FP1
2,011
18
-1
0
VAL
Ricardo Tormo
21
0.0039
4.75
27.3
33.5
Partly cloudy
Dry
18
22
220
177
147
17
7
84.415
405,824
99,047
3,311
Formula2
5.021
25
8
174.8
Dry
79
Soft
null
207
13
FP4
2,006
1
15
1
SPA
Jerez
18
0.0042
3.22
22.7
36
Sunny
Dry
28
47
96
86
66
0
0
93.832
873,312
42,041
2,196
Formula3
4.991
25
20
201.33
Dry
88
Medium
+5s
150
5
Race
1,964
2
6
1
TT
Isle of Man
12
0.0049
2.21
23.3
38
Cloudy
Dry
22
23
8
8
6
0
0
76.428
537,197
2,042,357
7,077
Formula3
4.835
19
17
209.57
Wet
63
Medium
DNS
158
4
Sprint
2,013
7
20
0
NED
Assen
13
0.0023
3.58
16.3
24.5
Cloudy
Dry
22
31
134
100
46
0
0
87.091
95,067
49,480
4,334
Formula1
3.509
24
21
297.17
Wet
37
Medium
Ride Through
56
18
FP2
1,982
10
9
2
SWE
Anderstorp
15
0.0023
2.46
26.3
36.1
Cloudy
Wet
14
14
75
75
51
1
0
80.151
352,153
1,033,835
9,280
Formula1
4.813
25
19
335.44
Wet
41
Medium
+5s
335
9
Qualifying
1,999
6
10
6
CAT
Catalunya
24
0.0037
4.84
19.2
30.8
Sunny
Dry
16
19
70
68
55
0
0
106.377
240,574
468,702
5,572
Formula3
4.293
21
22
236.85
Wet
54
Soft
DNS
92
22
Sprint
2,006
4
-1
0
CHN
Shanghai
24
0.0042
4.71
32.9
33.1
Raining
Wet
12
12
11
9
0
0
0
103.853
241,295
100,059
5,965
Formula1
3.522
24
22
286.17
Wet
58
Soft
null
60
18
Sprint
2,000
4
16
0
SPA
Jerez
14
0.002
2.67
33.6
45.7
Raining
Wet
12
12
102
97
75
10
5
104.435
17,432
2,240,148
6,466
Formula3
3.745
19
15
348.71
Wet
65
Hard
+3s
22
9
FP3
2,015
18
26
0
VAL
Ricardo Tormo
23
0.0048
4.48
32.5
35.4
Partly cloudy
Dry
18
22
10
8
3
0
0
87.876
953,986
604,919
9,321
Formula1
5.434
22
12
191.13
Wet
61
Hard
null
330
14
Qualifying
1,979
8
10
1
BEL
Spa-Francorchamps
22
0.0009
2.17
34.4
38.7
Sunny
Dry
27
46
1
1
1
0
0
92.176
442,193
2,316,307
3,910
Formula2
4.509
22
3
284.53
Dry
75
Hard
DNS
126
5
FP4
1,996
14
2
20
RIO
Nelson Piquet
10
0.0043
3.18
17.3
30.1
Sunny
Dry
36
48
146
140
129
35
20
78.864
762,799
743,571
6,785
Formula2
3.851
20
6
273.97
Dry
57
Medium
+5s
120
9
Qualifying
2,020
4
-1
0
CZE
Brno
12
0.0007
3.88
15.6
23.9
Raining
Wet
12
12
102
70
31
0
0
71.761
607,167
1,003,769
7,939
Formula1
4.587
18
16
221.49
Dry
40
Medium
+5s
51
4
Race
2,000
3
20
0
JPN
Suzuka
20
0.0015
2.82
26.9
32.5
Partly cloudy
Dry
21
21
19
14
2
0
0
109.907
208,997
2,542,871
2,846
Formula2
4.97
18
18
156.44
Dry
44
Soft
DNS
75
24
FP3
2,020
13
-1
0
EUR
Ricardo Tormo
23
0.0013
2.49
33.5
46.8
Sunny
Dry
21
31
70
50
43
8
4
94.972
264,710
319,153
8,394
Formula2
5.696
20
18
326.26
Wet
63
Hard
+3s
48
5
Race
2,005
8
14
2
USA
Laguna Seca
23
0.004
2.89
15.1
20.6
Sunny
Dry
27
46
69
62
61
37
23
77.719
613,283
2,337,923
5,880
Formula2
3.762
22
22
208.38
Dry
33
Soft
null
177
19
Sprint
1,989
9
18
0
NED
Assen
18
0.0006
3.34
33.2
46.6
Cloudy
Dry
21
29
33
27
13
1
1
87.675
662,062
823,462
8,286
Formula1
3.779
18
13
154.8
Wet
30
Medium
+5s
278
15
Race
2,013
4
-1
0
FRA
Le Mans
21
0.0047
2.25
19.2
24.4
Raining
Wet
12
12
222
201
178
30
17
102.372
347,913
204,358
9,721
Formula2
4.592
23
2
184.93
Dry
44
Hard
+5s
246
24
Race
1,992
11
1
20
GBR
Donington Park
19
0.0006
4.17
30.5
36.4
Sunny
Dry
26
35
90
85
82
37
18
104.461
200,136
1,562,386
7,362
Formula1
5.68
18
17
294.23
Wet
32
Hard
null
8
2
FP2
2,012
17
5
11
AUS
Phillip Island
23
0.0049
2.98
27.2
35.1
Partly cloudy
Dry
36
54
126
97
74
9
8
103.488
92,955
240,696
9,983
Formula1
5.319
22
22
176.09
Dry
43
Hard
+3s
170
13
FP4
2,016
16
-4
0
AUS
Phillip Island
25
0.0047
2.81
33.5
36.3
Clear
Dry
23
35
137
116
106
17
6
89.711
299,202
1,796,605
9,704
Formula2
5.332
18
21
154.54
Wet
55
Hard
+3s
6
7
FP2
2,012
8
13
3
GER
Sachsenring
13
0.0008
2.45
22
32
Sunny
Dry
27
46
97
77
27
0
0
90.525
374,901
50,776
1,362
Formula1
4.737
20
21
337.56
Wet
83
Hard
null
27
1
Race
1,965
9
2
6
FIN
Imatra
10
0.0025
2.03
26.1
33.6
Cloudy
Dry
21
29
33
33
33
2
0
92.841
759,841
2,526,002
6,158
Formula2
5.317
23
9
333.43
Wet
60
Hard
DNS
290
19
FP1
1,998
1
15
1
JPN
Suzuka
11
0.0025
3.82
31.8
39.4
Sunny
Dry
28
47
60
54
40
0
0
101.661
832,383
1,975,759
3,355
Formula2
4.297
20
18
257.55
Dry
44
Hard
DNF
219
3
Sprint
1,984
1
13
0
RSA
Kyalami
14
0.0009
4.69
34.2
45.3
Sunny
Dry
28
47
59
57
19
0
0
89.494
398,614
231,608
8,591
Formula1
5.294
20
6
254.06
Dry
53
Hard
DNF
333
1
Qualifying
2,014
8
10
6
NED
Assen
17
0.0024
4.4
19.2
33.7
Sunny
Dry
27
46
196
156
129
15
7
87.698
826,753
515,560
8,295
Formula1
5.768
22
10
290.04
Wet
70
Soft
Ride Through
240
10
Qualifying
2,006
4
10
6
CHN
Shanghai
14
0.0033
3.61
15.4
18.3
Raining
Wet
12
12
294
238
199
9
5
103.832
10,818
1,968,671
1,698
Formula3
4.385
25
7
334.68
Wet
38
Medium
+5s
275
5
Sprint
2,019
8
13
3
NED
Assen
15
0.0013
2.11
19.3
32.4
Sunny
Dry
27
46
37
33
9
0
0
90.008
20,696
970,523
7,052
Formula2
3.661
24
7
219.38
Wet
66
Medium
+3s
265
23
Sprint
1,988
13
-1
0
SWE
Anderstorp
12
0.0009
3.16
30.9
34.4
Sunny
Dry
21
31
105
98
89
20
7
81.99
1,011,888
955,140
6,997
Formula2
3.96
21
10
316.18
Wet
50
Soft
+3s
254
7
Race
1,995
7
22
0
NED
Assen
19
0.0046
2.53
21.1
32.2
Cloudy
Dry
22
31
1
1
0
0
0
91.669
1,036,436
1,030,763
8,567
Formula3
4.478
18
13
203.57
Dry
82
Hard
null
319
23
FP4
1,983
3
6
5
NAT
Monza
24
0.002
4.18
26.8
32.8
Partly cloudy
Dry
21
21
17
16
9
2
1
98.104
141,507
868,994
3,198
Formula2
5.143
21
19
302.6
Wet
81
Hard
+3s
307
19
FP2
2,018
5
15
1
FRA
Le Mans
10
0.0024
2.08
19.8
20.4
Partly cloudy
Dry
26
40
203
173
130
6
2
78.36
1,011,396
1,481,598
1,377
Formula2
5.573
24
15
203.86
Dry
81
Hard
null
78
9
Race
1,986
2
18
0
NAT
Monza
18
0.0042
4.92
19.1
32.1
Cloudy
Dry
22
23
17
17
1
0
0
88.552
767,238
2,178,148
4,504
Formula2
5.534
23
5
180.74
Dry
54
Soft
Ride Through
106
8
Qualifying
2,008
3
7
9
POR
Estoril
18
0.0017
3.93
23.3
36
Partly cloudy
Dry
21
21
35
32
29
0
0
76.689
615,661
2,231,910
9,941
Formula3
4.234
22
8
206.63
Wet
48
Soft
Ride Through
150
16
Qualifying
1,981
2
1
15
WGER
Hockenheim
18
0.003
4.35
25.1
33
Cloudy
Dry
22
23
125
122
119
56
35
89.801
438,247
270,259
9,847
Formula1
5.099
23
3
182.41
Wet
72
Medium
+3s
6
7
Race
2,008
4
7
9
CHN
Shanghai
10
0.0011
2.81
30.2
30.3
Raining
Wet
12
12
194
173
160
5
0
104.931
88,111
2,661,476
1,356
Formula1
4.832
18
16
340.15
Dry
64
Soft
DNF
341
10
FP4
1,997
12
12
4
CZE
Brno
17
0.0005
3.83
32
35.9
Cloudy
Dry
17
24
112
110
93
10
0
86.57
411,675
943,618
2,083
Formula2
4.337
22
10
213.48
Wet
78
Medium
Ride Through
120
20
Race
2,007
14
11
5
POR
Estoril
25
0.0034
4.77
32.2
35.5
Sunny
Dry
36
48
238
194
154
23
13
71.315
608,070
1,352,438
3,708
Formula1
5.835
23
9
291.39
Wet
86
Medium
+3s
300
20
Qualifying
2,006
9
-5
0
GBR
Donington Park
17
0.0023
2.53
18.4
32.2
Cloudy
Dry
21
29
29
18
0
0
0
73.968
879,201
2,017,273
1,955
Formula1
4.876
22
3
155.13
Wet
82
Soft
+3s
81
6
FP2
1,992
2
21
0
AUS
Eastern Creek
17
0.0028
3.57
32.1
46.3
Cloudy
Dry
22
23
89
83
30
0
0
87.321
655,297
2,062,788
7,767
Formula3
3.561
21
11
229.08
Wet
50
Hard
+5s
191
24
FP4
2,010
5
-1
0
GBR
Silverstone
17
0.0018
2.39
26
40.5
Partly cloudy
Dry
26
40
165
112
75
3
2
79.038
763,516
1,538,999
8,460
Formula2
4.749
22
20
325.41
Wet
80
Hard
+3s
93
4
FP3
2,003
2
3
16
RSA
Phakisa Freeway
15
0.0047
2.3
16.3
24.4
Cloudy
Dry
22
23
180
170
168
82
42
72.087
169,659
1,695,707
1,261
Formula1
4.969
20
4
342.32
Wet
71
Soft
+3s
126
24
Qualifying
2,013
6
8
8
CAT
Catalunya
17
0.0035
2.86
24.9
32.1
Sunny
Dry
16
19
231
216
155
5
2
76.315
62,704
1,540,508
6,824
Formula3
4.629
18
4
250.38
Wet
76
Medium
null
163
3
FP4
1,985
4
10
1
NAT
Mugello
13
0.0036
4.02
27.8
29.7
Raining
Wet
12
12
19
18
13
0
0
89.37
834,328
2,080,013
4,308
Formula3
3.61
25
6
295.28
Wet
70
Hard
+5s
159
24
Race
2,008
17
6
10
MAL
Sepang
11
0.0043
3.33
19.1
19.6
Partly cloudy
Dry
36
54
134
115
105
5
2
92.875
175,071
593,732
3,468
Formula2
3.569
20
18
245.93
Dry
60
Soft
Ride Through
76
3
FP4
2,013
5
13
3
ITA
Mugello
13
0.0033
3.56
32.6
37
Partly cloudy
Dry
26
40
238
194
154
23
13
92.571
480,066
73,474
1,551
Formula3
3.982
19
3
317.27
Dry
86
Medium
DNF
59
5
FP2
2,015
1
16
0
QAT
Losail
13
0.0033
2.19
28.9
31.6
Sunny
Dry
28
47
205
176
136
1
0
91.325
1,003,241
1,530,575
7,241
Formula2
5.263
24
20
255.45
Wet
62
Soft
DNF
155
23
FP2
1,984
7
8
3
JUG
Rijeka
23
0.0012
4.33
15.3
25.7
Cloudy
Dry
22
31
25
24
18
0
0
93.335
998,029
2,707,430
7,210
Formula1
5.886
18
13
337.81
Dry
36
Medium
null
109
7
FP4
2,020
12
13
3
TER
Aragón
21
0.0008
4.03
16.3
22.6
Cloudy
Dry
17
24
144
121
72
1
0
107.982
77,395
2,571,412
7,494
Formula2
5.894
24
22
339.18
Dry
81
Hard
Ride Through
22
22
Race
1,987
5
16
0
AUT
Salzburgring
13
0.0037
2.16
28.7
38.5
Partly cloudy
Dry
26
40
15
14
4
0
0
109.087
204,733
435,691
9,683
Formula2
4.705
25
19
163.42
Wet
77
Hard
DNF
297
23
FP2
2,011
1
32
0
QAT
Losail
24
0.0023
3.29
20.3
21.4
Sunny
Dry
28
47
4
3
0
0
0
104.153
429,411
1,308,372
7,196
Formula1
4.405
20
18
252.85
Dry
86
Soft
DNS
258
10
FP3
1,959
2
1
8
TT
Isle of Man
25
0.0037
2.53
19
21.9
Cloudy
Dry
22
23
48
48
48
41
37
91.853
986,273
20,156
6,361
Formula1
3.947
25
6
228.32
Dry
45
Hard
Ride Through
54
8
FP1
1,974
7
9
2
BEL
Spa-Francorchamps
10
0.0024
4.14
17.8
21
Cloudy
Dry
22
31
14
14
14
0
0
93.116
893,383
2,357,483
4,985
Formula1
5.082
19
3
313.41
Wet
62
Hard
null
15
12
FP2
1,973
4
7
4
TT
Isle of Man
17
0.0009
3.04
30.3
31.9
Raining
Wet
12
12
34
33
29
0
0
85.657
344,222
2,519,072
5,663
Formula1
5.296
21
18
232.43
Wet
43
Medium
DNF
176
24
FP2
1,957
1
6
1
WGER
Hockenheim
15
0.0041
2.79
31.3
40.1
Sunny
Dry
28
47
14
14
14
0
0
79.237
731,087
1,651,912
9,150
Formula2
4.679
21
4
235.89
Dry
87
Soft
DNS
155
7
FP2
1,985
2
13
0
SPA
Jarama
23
0.0036
3.28
20.8
30.3
Cloudy
Dry
22
23
47
45
7
0
0
102.202
511,704
2,576,781
9,468
Formula1
5.565
22
2
250.24
Wet
49
Medium
DNS
120
20
FP3
1,999
3
8
8
SPA
Jerez
12
0.0032
3.7
31.5
35.2
Partly cloudy
Dry
21
21
110
102
88
13
5
76.571
69,160
304,357
9,126
Formula1
5.09
25
13
245.24
Dry
87
Soft
null
111
13
Race
1,977
8
8
3
SWE
Anderstorp
17
0.0027
4.51
35
47.8
Sunny
Dry
27
46
19
19
19
1
0
84.784
701,526
1,218,891
4,899
Formula3
3.994
18
22
226.73
Dry
32
Medium
DNS
182
19
Qualifying
2,013
8
23
0
GER
Sachsenring
16
0.0044
4.35
29.5
44.4
Sunny
Dry
27
46
167
128
92
9
3
85.241
311,796
1,141,112
7,900
Formula1
5.541
18
11
150.99
Dry
63
Soft
Ride Through
223
1
FP4
2,014
15
25
0
JPN
Motegi
23
0.003
3.55
18
27.1
Cloudy
Dry
19
23
43
39
0
0
0
83.308
33,069
684,925
9,863
Formula3
3.512
19
5
202.56
Dry
47
Soft
+5s
313
9
FP3
2,013
18
15
1
VAL
Ricardo Tormo
23
0.0019
2.28
28.1
36.2
Partly cloudy
Dry
18
22
190
157
125
9
4
100.09
310,011
2,367,748
7,888
Formula2
4.531
25
1
272.6
Dry
71
Soft
+3s
278
7
FP1
1,965
2
3
4
WGER
Nurburgring
14
0.0041
2.66
28.6
34.3
Cloudy
Dry
22
23
48
48
48
25
17
105.326
255,920
1,480,053
7,135
Formula1
4.174
23
11
230.55
Wet
56
Medium
+5s
175
20
Qualifying
1,990
8
18
0
NED
Assen
13
0.0015
3.6
34.4
34.5
Sunny
Dry
27
46
58
49
35
1
1
77.069
821,879
1,780,908
2,187
Formula3
4.182
24
15
224.59
Dry
34
Soft
Ride Through
147
17
FP4
1,972
8
4
8
BEL
Spa-Francorchamps
20
0.0024
2.65
16.9
31.6
Sunny
Dry
27
46
47
47
47
4
0
79.988
678,413
1,300,847
8,004
Formula2
4.186
21
3
316.5
Dry
75
Hard
+5s
250
19
Qualifying
1,995
6
15
1
ITA
Mugello
20
0.0043
2.65
26.5
34.9
Sunny
Dry
16
19
25
25
7
0
0
95.373
98,369
2,560,140
5,507
Formula2
3.766
21
14
295.42
Wet
45
Soft
DNF
320
12
Sprint
1,996
14
-1
0
RIO
Nelson Piquet
25
0.0015
3.82
25.4
28.7
Sunny
Dry
36
48
33
25
9
0
0
93.629
688,730
2,123,626
4,198
Formula1
4.16
18
11
311.7
Wet
36
Soft
DNF
246
18
FP2
2,018
8
18
0
NED
Assen
20
0.003
2.28
19.6
21
Sunny
Dry
27
46
121
112
60
2
1
70.083
283,367
2,114,670
7,732
Formula1
4.993
23
20
228.08
Dry
61
Hard
+5s
25
7
FP3
2,000
11
6
10
CZE
Brno
10
0.0035
2.94
32.3
39.9
Sunny
Dry
26
35
147
129
119
22
9
107.804
263,616
1,957,845
7,529
Formula3
5.223
22
4
322.99
Dry
43
Medium
null
34
9
FP1
1,964
6
6
1
EGER
Sachsenring
21
0.0044
2.75
31.3
40.4
Sunny
Dry
16
19
32
32
29
0
0
88.014
1,031,219
1,405,006
8,570
Formula2
3.631
25
5
246.35
Wet
86
Hard
null
270
18
Qualifying
2,011
15
-2
0
JPN
Motegi
10
0.0017
4.05
31.7
37.3
Cloudy
Dry
19
23
1
0
0
0
0
104.754
147,180
1,740,519
8,153
Formula1
3.781
23
10
291.2
Wet
36
Medium
null
161
12
FP1
2,002
3
14
2
SPA
Jerez
24
0.0017
2.06
16
23
Partly cloudy
Dry
21
21
33
27
17
0
0
84.892
109,673
2,225,674
6,415
Formula2
4.165
19
10
178
Wet
72
Hard
DNS
144
10
Sprint
2,008
15
2
20
JPN
Motegi
15
0.0007
4.02
26.7
36.4
Cloudy
Dry
19
23
200
162
96
13
6
74.622
557,307
910,201
2,859
Formula3
5.028
20
14
275.16
Wet
88
Medium
Ride Through
32
5
FP1
2,021
8
15
1
GER
Sachsenring
14
0.0013
4.7
23.1
28.4
Sunny
Dry
27
46
104
82
64
12
6
101.88
186,118
1,702,763
7,221
Formula2
5.804
22
13
237.52
Dry
56
Medium
Ride Through
150
24
Sprint
1,966
2
3
4
NED
Assen
23
0.0036
3.74
33.1
36.7
Cloudy
Dry
22
23
48
48
48
25
17
101.305
335,157
693,126
1,437
Formula2
4.296
23
8
219.82
Wet
42
Hard
null
169
7
Race
1,987
14
10
1
BRA
Goiania
18
0.0035
2.39
16.3
25
Sunny
Dry
36
48
99
91
79
7
3
107.312
345,075
32,775
1,245
Formula1
4.993
19
16
275.34
Dry
59
Soft
DNF
280
19
Qualifying
1,963
5
6
1
EGER
Sachsenring
16
0.0007
4.54
28.1
41.3
Partly cloudy
Dry
26
40
7
7
7
0
0
101.845
875,790
1,392,363
5,710
Formula3
5.683
22
20
280.38
Dry
45
Medium
Ride Through
273
11
FP3
2,018
4
-4
0
SPA
Jerez
22
0.002
2.19
28.9
33
Raining
Wet
12
12
278
213
190
1
0
94.487
186,894
1,231,970
8,827
Formula1
5.555
18
21
209.01
Wet
87
Medium
null
240
20
FP2
2,009
9
19
0
GER
Sachsenring
10
0.003
2.28
32.4
42.3
Cloudy
Dry
21
29
1
1
0
0
0
94.716
360,495
2,611,903
4,356
Formula2
5.828
19
15
314.52
Wet
88
Medium
Ride Through
165
17
Qualifying
1,998
11
1
25
IMO
Imola
13
0.0036
3.09
17.2
25.3
Sunny
Dry
26
35
406
373
365
178
111
95.494
1,008,687
1,491,600
9,781
Formula3
5.384
25
16
324.43
Wet
70
Soft
null
128
3
FP3
1,989
11
3
15
FRA
Le Mans
11
0.0014
2.18
33.8
45.3
Sunny
Dry
26
35
75
71
62
22
9
78.888
847,636
587,886
4,198
Formula2
4.545
18
6
316.32
Wet
68
Soft
DNF
89
16
Race
2,019
1
5
11
QAT
Losail
10
0.0041
3.9
34.1
39.4
Sunny
Dry
28
47
72
59
47
4
3
86.964
1,016,608
599,025
3,081
Formula3
3.569
20
6
179.64
Dry
74
Hard
+3s
334
4
Race
1,965
5
4
3
BEL
Spa-Francorchamps
23
0.0032
4.04
26.9
36.9
Partly cloudy
Dry
26
40
33
33
33
2
0
106.526
268,140
488,864
8,772
Formula2
3.845
24
9
341.71
Wet
41
Hard
null
130
6
Race
1,990
1
4
13
JPN
Suzuka
24
0.0006
2.93
22.9
25.1
Sunny
Dry
28
47
98
95
86
20
14
89.601
727,637
508,091
1,160
Formula2
4.449
20
2
289.16
Dry
61
Soft
Ride Through
27
6
Sprint
1,990
10
14
2
FRA
Le Mans
20
0.0041
2.52
22.3
34.8
Cloudy
Wet
14
14
67
65
13
0
0
96.61
End of preview. Expand in Data Studio

GDGC Datathon 2025 - Formula Racing Lap Time Dataset

Dataset for predicting Formula racing lap times, used in the GDGC Datathon 2025 competition.

Dataset Description

This dataset contains historical Formula racing data with various features related to circuits, weather conditions, rider/driver performance, and race configurations. The goal is to predict Lap_Time_Seconds.

Dataset Summary

Split Samples Size
Train 734,002 124 MB
Test 195,001 51 MB

Dataset Structure

Files

data/
├── train.csv    # Training data with target variable
└── test.csv     # Test data for predictions

Features

Column Description Type
id Unique identifier int
Unique ID Alternative unique ID int
Rider_ID Rider/driver identifier int
Formula_category_x Racing formula category categorical
Len_Circuit_inkm Circuit length in kilometers float
Laps Number of laps in the race int
Start_Position Starting grid position int
Formula_Avg_Speed_kmh Average speed in km/h float
Formula_Track_Condition Track condition rating categorical
Humidity_% Humidity percentage float
Tire_Compound Type of tire compound used categorical
Penalty Penalty time/status float
Champ_Points Championship points float
Champ_Position Championship standing position int
Session Race session type categorical
race_year Year of the race int
seq Sequence number int
position Final position int
points Points earned float
Formula_shortname Short name of formula categorical
circuit_name Name of the circuit categorical
Corners_in_Lap Number of corners per lap int
Tire_Degradation_Factor_per_Lap Tire degradation rate float
Pit_Stop_Duration_Seconds Pit stop time in seconds float
Ambient_Temperature_Celsius Air temperature float
Track_Temperature_Celsius Track surface temperature float
weather Weather condition categorical
track Track identifier categorical
air Air condition metric float
ground Ground condition metric float
starts Number of race starts int
finishes Number of race finishes int
with_points Races finished with points int
podiums Number of podium finishes int
wins Number of wins int
Lap_Time_Seconds Target variable - Lap time in seconds float

Target Variable Statistics

Metric Value
Count 734,002
Mean 89.997 s
Std 11.532 s
Min 70.001 s
25% 79.989 s
50% (Median) 89.970 s
75% 99.914 s
Max 109.999 s

The target distribution is nearly symmetric with mean ≈ median, indicating no significant skew.

Usage

Loading with Pandas

import pandas as pd

# Load training data
train_df = pd.read_csv("train.csv")
print(f"Training samples: {len(train_df)}")

# Load test data
test_df = pd.read_csv("test.csv")
print(f"Test samples: {len(test_df)}")

# Separate features and target
X = train_df.drop(columns=["Lap_Time_Seconds", "id"])
y = train_df["Lap_Time_Seconds"]

Loading from Hugging Face

from huggingface_hub import hf_hub_download
import pandas as pd

# Download files
train_path = hf_hub_download(
    repo_id="Haxxsh/gdgc-datathon-data",
    filename="train.csv",
    repo_type="dataset"
)

test_path = hf_hub_download(
    repo_id="Haxxsh/gdgc-datathon-data",
    filename="test.csv",
    repo_type="dataset"
)

# Load into pandas
train_df = pd.read_csv(train_path)
test_df = pd.read_csv(test_path)

With Datasets Library

from datasets import load_dataset

dataset = load_dataset("Haxxsh/gdgc-datathon-data")

Trained Models

Pre-trained models for this dataset are available at:

Evaluation Metric

The primary evaluation metric is RMSE (Root Mean Squared Error):

from sklearn.metrics import mean_squared_error
import numpy as np

rmse = np.sqrt(mean_squared_error(y_true, y_pred))

Data Preprocessing Tips

  1. Handle categorical features: Use label encoding or one-hot encoding for columns like weather, circuit_name, Tire_Compound
  2. Feature scaling: Normalize numerical features for certain models
  3. Missing values: Check for and handle any missing values appropriately
  4. Feature engineering: Consider creating interaction features or aggregations

License

MIT License

Citation

@dataset{gdgc-datathon-2025-data,
  author = {Haxxsh},
  title = {GDGC Datathon 2025 - Formula Racing Lap Time Dataset},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/Haxxsh/gdgc-datathon-data}
}

Acknowledgments

  • GDGC Datathon 2025 organizers
  • Formula racing data providers
Downloads last month
8

Models trained or fine-tuned on Haxxsh/gdgc-datathon-data