kartoun commited on
Commit
88b23db
·
verified ·
1 Parent(s): 7e66447

Upload 2 files

Browse files
DBbun_Davis_ML_demo.ipynb ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "4e333c36",
6
+ "metadata": {},
7
+ "source": [
8
+ "# DBbun Davis — Machine Learning Demo\n",
9
+ "This notebook shows how to build ML models using the synthetic **Davis Square** dataset.\n",
10
+ "\n",
11
+ "We’ll do three examples:\n",
12
+ "1. **Classification:** predict whether a public safety incident is **high severity** using incident, weather, and street features.\n",
13
+ "2. **Regression:** predict **noise (dB)** from weather and traffic context.\n",
14
+ "3. **Clustering:** group streets by **mobility signature** (mode mix) using K-Means.\n",
15
+ "\n",
16
+ "All **figures, tables, and models** are saved locally.\n"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 29,
22
+ "id": "4f2d9fff",
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "# --- User config ---\n",
27
+ "#DATA_DIR = \"./out_dbbun_davis_medium\" # Set to your dataset folder\n",
28
+ "DATA_DIR = \"./\"\n",
29
+ "FIGS_DIR = \"./ml_figs\"\n",
30
+ "TABLES_DIR = \"./ml_tables\"\n",
31
+ "MODELS_DIR = \"./ml_models\"\n",
32
+ "\n",
33
+ "# --- Imports ---\n",
34
+ "import os, json, pickle, re\n",
35
+ "import numpy as np\n",
36
+ "import pandas as pd\n",
37
+ "import matplotlib.pyplot as plt\n",
38
+ "\n",
39
+ "from sklearn.model_selection import train_test_split, cross_val_score\n",
40
+ "from sklearn.preprocessing import OneHotEncoder, StandardScaler\n",
41
+ "from sklearn.compose import ColumnTransformer\n",
42
+ "from sklearn.pipeline import Pipeline\n",
43
+ "from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, RocCurveDisplay, mean_absolute_error, r2_score\n",
44
+ "from sklearn.linear_model import LogisticRegression, LinearRegression\n",
45
+ "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor\n",
46
+ "from sklearn.cluster import KMeans\n",
47
+ "\n",
48
+ "os.makedirs(FIGS_DIR, exist_ok=True)\n",
49
+ "os.makedirs(TABLES_DIR, exist_ok=True)\n",
50
+ "os.makedirs(MODELS_DIR, exist_ok=True)\n",
51
+ "\n",
52
+ "def savefig(name):\n",
53
+ " path = os.path.join(FIGS_DIR, name)\n",
54
+ " plt.savefig(path, bbox_inches=\"tight\", dpi=144)\n",
55
+ " plt.close()\n",
56
+ " print(f\"Saved figure: {path}\")\n",
57
+ "\n",
58
+ "def savetab(df, name):\n",
59
+ " path = os.path.join(TABLES_DIR, name)\n",
60
+ " df.to_csv(path, index=False)\n",
61
+ " print(f\"Saved table: {path}\")\n",
62
+ "\n",
63
+ "def savemodel(model, name):\n",
64
+ " path = os.path.join(MODELS_DIR, name)\n",
65
+ " with open(path, \"wb\") as f:\n",
66
+ " pickle.dump(model, f)\n",
67
+ " print(f\"Saved model: {path}\")"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "code",
72
+ "execution_count": 30,
73
+ "id": "fce74eac-3c7b-4f5b-85f5-2e7b0a9fbdb3",
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "import os\n",
78
+ "os.environ[\"OMP_NUM_THREADS\"] = \"1\""
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": 31,
84
+ "id": "0fd4f78b-44e7-424d-8f1c-3bbc29468cba",
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "import warnings\n",
89
+ "warnings.filterwarnings(\"ignore\", category=FutureWarning, module=\"pandas\")"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": 32,
95
+ "id": "2a2efd9d-75b0-43f4-894b-f7347e3febdb",
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "pd.set_option('future.no_silent_downcasting', True)"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 33,
105
+ "id": "0ac6980b",
106
+ "metadata": {},
107
+ "outputs": [
108
+ {
109
+ "name": "stdout",
110
+ "output_type": "stream",
111
+ "text": [
112
+ "Loaded tables:\n",
113
+ " streets: (15, 7) | safety: (12000, 8) | obs: (35000, 7) | weather: (101136, 7)\n"
114
+ ]
115
+ }
116
+ ],
117
+ "source": [
118
+ "# Load data\n",
119
+ "def load_csv(name):\n",
120
+ " return pd.read_csv(os.path.join(DATA_DIR, name))\n",
121
+ "\n",
122
+ "# Helper for WKT point -> (lon,lat)\n",
123
+ "def wkt_point_to_lonlat(wkt):\n",
124
+ " m = re.match(r\"POINT\\(([-0-9\\.]+)\\s+([-0-9\\.]+)\\)\", str(wkt))\n",
125
+ " if not m:\n",
126
+ " return np.nan, np.nan\n",
127
+ " lon, lat = float(m.group(1)), float(m.group(2))\n",
128
+ " return lon, lat\n",
129
+ "\n",
130
+ "# Tables\n",
131
+ "streets = load_csv(\"geo_streets.csv\")\n",
132
+ "parks = load_csv(\"geo_parks.csv\")\n",
133
+ "poi = load_csv(\"poi_generic.csv\")\n",
134
+ "households = load_csv(\"households.csv\")\n",
135
+ "pets = load_csv(\"pets_registry.csv\")\n",
136
+ "pet_inc = load_csv(\"pet_incidents.csv\")\n",
137
+ "trips = load_csv(\"mobility_trips.csv\")\n",
138
+ "safety = load_csv(\"public_safety.csv\")\n",
139
+ "events = load_csv(\"events_civic.csv\")\n",
140
+ "obs = load_csv(\"observations.csv\")\n",
141
+ "lines = load_csv(\"transit_lines.csv\")\n",
142
+ "stops = load_csv(\"transit_stops.csv\")\n",
143
+ "ridership = load_csv(\"transit_ridership_daily.csv\")\n",
144
+ "bike = load_csv(\"bike_infra.csv\")\n",
145
+ "traffic = load_csv(\"traffic_counts.csv\")\n",
146
+ "prices = load_csv(\"prices_index.csv\")\n",
147
+ "weather = load_csv(\"weather_daily.csv\")\n",
148
+ "trees = load_csv(\"trees_inventory.csv\")\n",
149
+ "infra = load_csv(\"infrastructure_events.csv\")\n",
150
+ "bissues = load_csv(\"building_issues.csv\")\n",
151
+ "\n",
152
+ "with open(os.path.join(DATA_DIR, \"DATA_DICTIONARY.json\"), \"r\", encoding=\"utf-8\") as f:\n",
153
+ " dd = json.load(f)\n",
154
+ "\n",
155
+ "# Basic sanity\n",
156
+ "print(\"Loaded tables:\")\n",
157
+ "print(\" streets:\", streets.shape, \"| safety:\", safety.shape, \"| obs:\", obs.shape, \"| weather:\", weather.shape)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": 34,
163
+ "id": "2a457810",
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "def nearest_year_join(left_df, left_year_col, right_df, right_year_col, on_key_col):\n",
168
+ " # For each (on_key_col, year) in left_df, find the right_df row with smallest |year diff|\n",
169
+ " # This is a simple but effective approach for decimated time series.\n",
170
+ " right_sorted = right_df.sort_values([on_key_col, right_year_col]).copy()\n",
171
+ " out_rows = []\n",
172
+ " for (k, y), block in left_df.groupby([on_key_col, left_year_col]):\n",
173
+ " cand = right_sorted[right_sorted[on_key_col]==k]\n",
174
+ " if cand.empty:\n",
175
+ " # no match for this key\n",
176
+ " tmp = block.copy()\n",
177
+ " tmp[\"__ry\"] = np.nan\n",
178
+ " tmp[\"__ridx\"] = -1\n",
179
+ " out_rows.append(tmp)\n",
180
+ " continue\n",
181
+ " # pick nearest by year\n",
182
+ " ridx = int((cand[right_year_col] - y).abs().idxmin())\n",
183
+ " tmp = block.copy()\n",
184
+ " tmp[\"__ry\"] = cand.loc[ridx, right_year_col]\n",
185
+ " tmp[\"__ridx\"] = ridx\n",
186
+ " out_rows.append(tmp)\n",
187
+ " joined_left = pd.concat(out_rows, axis=0)\n",
188
+ "\n",
189
+ " # Attach right_df columns by __ridx where available\n",
190
+ " joined = joined_left.merge(right_df.add_prefix(\"r__\"), left_on=\"__ridx\", right_index=True, how=\"left\")\n",
191
+ " joined = joined.drop(columns=[\"__ridx\"])\n",
192
+ " return joined"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "markdown",
197
+ "id": "ff73a6ff",
198
+ "metadata": {},
199
+ "source": [
200
+ "## 1) Classification: Predict high-severity public safety incidents\n",
201
+ "**Target:** `severity` mapped to binary: *high* vs *not-high* \n",
202
+ "**Features:** incident `category`, `reported_by`, street attributes (bike infra presence), daily weather (`temp_c`, `precip_mm`, `snow_cm`, `wind_kph`, `heatwave`)."
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": 35,
208
+ "id": "0a9bb0f2",
209
+ "metadata": {},
210
+ "outputs": [
211
+ {
212
+ "name": "stdout",
213
+ "output_type": "stream",
214
+ "text": [
215
+ " precision recall f1-score support\n",
216
+ "\n",
217
+ " 0 0.67 0.82 0.74 2026\n",
218
+ " 1 0.30 0.16 0.21 974\n",
219
+ "\n",
220
+ " accuracy 0.61 3000\n",
221
+ " macro avg 0.49 0.49 0.47 3000\n",
222
+ "weighted avg 0.55 0.61 0.57 3000\n",
223
+ "\n",
224
+ "Confusion matrix:\n",
225
+ " [[1671 355]\n",
226
+ " [ 820 154]]\n",
227
+ "ROC AUC: 0.4951799603106231\n",
228
+ "Saved figure: ./ml_figs\\clf_roc_curve.png\n",
229
+ "Saved model: ./ml_models\\incident_severity_rf.pkl\n",
230
+ "Saved table: ./ml_tables\\clf_metrics_incident_severity.csv\n"
231
+ ]
232
+ }
233
+ ],
234
+ "source": [
235
+ "# Prepare safety data\n",
236
+ "safety['date'] = pd.to_datetime(safety['date'])\n",
237
+ "safety['year'] = safety['date'].dt.year\n",
238
+ "safety['month'] = safety['date'].dt.month\n",
239
+ "safety['day'] = safety['date'].dt.day\n",
240
+ "\n",
241
+ "# Target\n",
242
+ "y = (safety['severity'] == 'high').astype(int)\n",
243
+ "\n",
244
+ "# Merge weather on date\n",
245
+ "weather['date'] = pd.to_datetime(weather['date'])\n",
246
+ "s_w = safety.merge(weather[['date','temp_c','precip_mm','snow_cm','wind_kph','heatwave']], on='date', how='left')\n",
247
+ "\n",
248
+ "# Street-level bike infra presence (binary, ever installed before safety year)\n",
249
+ "bike_any = bike.copy()\n",
250
+ "bike_any['has_bike_infra'] = True\n",
251
+ "s_w = s_w.merge(\n",
252
+ " bike_any[['street_id','has_bike_infra']].drop_duplicates('street_id'),\n",
253
+ " left_on='location_street_id', right_on='street_id', how='left'\n",
254
+ ")\n",
255
+ "s_w['has_bike_infra'] = s_w['has_bike_infra'].fillna(False).infer_objects(copy=False)\n",
256
+ "\n",
257
+ "# Assemble features\n",
258
+ "X = s_w[['category','reported_by','has_bike_infra','temp_c','precip_mm','snow_cm','wind_kph','heatwave','month']].copy()\n",
259
+ "\n",
260
+ "# Split numeric/categorical\n",
261
+ "num_cols = ['temp_c','precip_mm','snow_cm','wind_kph','month']\n",
262
+ "cat_cols = ['category','reported_by','heatwave','has_bike_infra']\n",
263
+ "\n",
264
+ "pre = ColumnTransformer([\n",
265
+ " (\"num\", StandardScaler(), num_cols),\n",
266
+ " (\"cat\", OneHotEncoder(handle_unknown=\"ignore\"), cat_cols)\n",
267
+ "])\n",
268
+ "\n",
269
+ "clf = Pipeline([\n",
270
+ " (\"pre\", pre),\n",
271
+ " (\"rf\", RandomForestClassifier(n_estimators=200, random_state=42, class_weight=\"balanced\"))\n",
272
+ "])\n",
273
+ "\n",
274
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y)\n",
275
+ "clf.fit(X_train, y_train)\n",
276
+ "\n",
277
+ "# Evaluate\n",
278
+ "pred = clf.predict(X_test)\n",
279
+ "proba = clf.predict_proba(X_test)[:,1]\n",
280
+ "\n",
281
+ "print(classification_report(y_test, pred))\n",
282
+ "cm = confusion_matrix(y_test, pred)\n",
283
+ "print(\"Confusion matrix:\\n\", cm)\n",
284
+ "\n",
285
+ "# ROC AUC & curve\n",
286
+ "auc = roc_auc_score(y_test, proba)\n",
287
+ "print(\"ROC AUC:\", auc)\n",
288
+ "\n",
289
+ "disp = RocCurveDisplay.from_predictions(y_test, proba)\n",
290
+ "plt.title(\"ROC Curve — High Severity Incident Classifier\")\n",
291
+ "savefig(\"clf_roc_curve.png\")\n",
292
+ "\n",
293
+ "# Save model\n",
294
+ "savemodel(clf, \"incident_severity_rf.pkl\")\n",
295
+ "\n",
296
+ "# Save metrics as table\n",
297
+ "metrics_tbl = pd.DataFrame({\n",
298
+ " \"roc_auc\":[auc],\n",
299
+ " \"accuracy\":[(pred==y_test).mean()],\n",
300
+ " \"n_test\":[len(y_test)]\n",
301
+ "})\n",
302
+ "savetab(metrics_tbl, \"clf_metrics_incident_severity.csv\")"
303
+ ]
304
+ },
305
+ {
306
+ "cell_type": "markdown",
307
+ "id": "78159761",
308
+ "metadata": {},
309
+ "source": [
310
+ "## 2) Regression: Predict street noise (dB)\n",
311
+ "**Target:** `observations` where `metric == \"noise_db\"` → `value` (dB). \n",
312
+ "**Features:** weather (temp, wind, rain, snow, heatwave), month, traffic volumes (nearest-year by street).\n"
313
+ ]
314
+ },
315
+ {
316
+ "cell_type": "code",
317
+ "execution_count": 36,
318
+ "id": "bb03cb92",
319
+ "metadata": {},
320
+ "outputs": [
321
+ {
322
+ "name": "stdout",
323
+ "output_type": "stream",
324
+ "text": [
325
+ "MAE: 5.521102874867018 R^2: 0.3084211030160505\n",
326
+ "Saved figure: ./ml_figs\\regr_noise_pred_vs_actual.png\n",
327
+ "Saved model: ./ml_models\\noise_rf.pkl\n",
328
+ "Saved table: ./ml_tables\\regr_noise_metrics.csv\n"
329
+ ]
330
+ }
331
+ ],
332
+ "source": [
333
+ "# Filter observations to noise\n",
334
+ "noise = obs[obs['metric']=='noise_db'].copy()\n",
335
+ "noise['date'] = pd.to_datetime(noise['date'])\n",
336
+ "noise['year'] = noise['date'].dt.year\n",
337
+ "noise['month'] = noise['date'].dt.month\n",
338
+ "\n",
339
+ "# Merge weather\n",
340
+ "weather['date'] = pd.to_datetime(weather['date'])\n",
341
+ "nz = noise.merge(weather[['date','temp_c','precip_mm','snow_cm','wind_kph','heatwave']], on='date', how='left')\n",
342
+ "\n",
343
+ "# Traffic is every ~5 years; map to nearest year by street\n",
344
+ "traffic['year'] = pd.to_datetime(traffic['date']).dt.year\n",
345
+ "nz_key = nz[['location_street_id','year']].copy()\n",
346
+ "nz_key = nz_key.rename(columns={'location_street_id':'street_id'})\n",
347
+ "traffic_near = nearest_year_join(nz_key, 'year', traffic[['street_id','year','vehicles_per_day','bikes_per_day','peds_per_day']], 'year', 'street_id')\n",
348
+ "\n",
349
+ "# Merge traffic back by index alignment\n",
350
+ "nz = nz.join(traffic_near[['r__street_id','r__year','r__vehicles_per_day','r__bikes_per_day','r__peds_per_day']].reset_index(drop=True))\n",
351
+ "# If missing traffic (e.g., older years), fill with medians\n",
352
+ "for c in ['r__vehicles_per_day','r__bikes_per_day','r__peds_per_day']:\n",
353
+ " nz[c] = nz[c].fillna(nz[c].median())\n",
354
+ "\n",
355
+ "# Prepare features/target\n",
356
+ "y = nz['value'].astype(float) # noise dB\n",
357
+ "X = nz[['temp_c','precip_mm','snow_cm','wind_kph','heatwave','month','r__vehicles_per_day','r__bikes_per_day','r__peds_per_day']].copy()\n",
358
+ "\n",
359
+ "num_cols = ['temp_c','precip_mm','snow_cm','wind_kph','month','r__vehicles_per_day','r__bikes_per_day','r__peds_per_day']\n",
360
+ "cat_cols = ['heatwave']\n",
361
+ "\n",
362
+ "pre = ColumnTransformer([\n",
363
+ " (\"num\", StandardScaler(), num_cols),\n",
364
+ " (\"cat\", OneHotEncoder(handle_unknown=\"ignore\"), cat_cols)\n",
365
+ "])\n",
366
+ "\n",
367
+ "regr = Pipeline([\n",
368
+ " (\"pre\", pre),\n",
369
+ " (\"rf\", RandomForestRegressor(n_estimators=200, random_state=42))\n",
370
+ "])\n",
371
+ "\n",
372
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)\n",
373
+ "regr.fit(X_train, y_train)\n",
374
+ "pred = regr.predict(X_test)\n",
375
+ "\n",
376
+ "mae = mean_absolute_error(y_test, pred)\n",
377
+ "r2 = r2_score(y_test, pred)\n",
378
+ "print(\"MAE:\", mae, \" R^2:\", r2)\n",
379
+ "\n",
380
+ "# Scatter: predicted vs actual\n",
381
+ "plt.figure(figsize=(6,6))\n",
382
+ "plt.scatter(y_test, pred, alpha=0.3)\n",
383
+ "plt.xlabel(\"Actual dB\"); plt.ylabel(\"Predicted dB\")\n",
384
+ "plt.title(\"Noise Regression — Predicted vs Actual\")\n",
385
+ "savefig(\"regr_noise_pred_vs_actual.png\")\n",
386
+ "\n",
387
+ "# Save model & metrics\n",
388
+ "savemodel(regr, \"noise_rf.pkl\")\n",
389
+ "savetab(pd.DataFrame({\"MAE\":[mae], \"R2\":[r2], \"n_test\":[len(y_test)]}), \"regr_noise_metrics.csv\")"
390
+ ]
391
+ },
392
+ {
393
+ "cell_type": "markdown",
394
+ "id": "11a13962",
395
+ "metadata": {},
396
+ "source": [
397
+ "## 3) Clustering: Streets by mobility signature\n",
398
+ "We compute, for each street, a **mode share vector** based on trips that originate on that street. \n",
399
+ "Then we cluster streets using **K-Means** and visualize cluster sizes."
400
+ ]
401
+ },
402
+ {
403
+ "cell_type": "code",
404
+ "execution_count": 37,
405
+ "id": "8b77b4d6",
406
+ "metadata": {},
407
+ "outputs": [
408
+ {
409
+ "name": "stderr",
410
+ "output_type": "stream",
411
+ "text": [
412
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
413
+ " warnings.warn(\n",
414
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
415
+ " warnings.warn(\n",
416
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
417
+ " warnings.warn(\n",
418
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
419
+ " warnings.warn(\n",
420
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
421
+ " warnings.warn(\n",
422
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
423
+ " warnings.warn(\n",
424
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
425
+ " warnings.warn(\n"
426
+ ]
427
+ },
428
+ {
429
+ "name": "stdout",
430
+ "output_type": "stream",
431
+ "text": [
432
+ "Saved figure: ./ml_figs\\cluster_elbow.png\n",
433
+ "Saved table: ./ml_tables\\cluster_sizes.csv\n"
434
+ ]
435
+ },
436
+ {
437
+ "name": "stderr",
438
+ "output_type": "stream",
439
+ "text": [
440
+ "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
441
+ " warnings.warn(\n"
442
+ ]
443
+ },
444
+ {
445
+ "data": {
446
+ "text/html": [
447
+ "<div>\n",
448
+ "<style scoped>\n",
449
+ " .dataframe tbody tr th:only-of-type {\n",
450
+ " vertical-align: middle;\n",
451
+ " }\n",
452
+ "\n",
453
+ " .dataframe tbody tr th {\n",
454
+ " vertical-align: top;\n",
455
+ " }\n",
456
+ "\n",
457
+ " .dataframe thead th {\n",
458
+ " text-align: right;\n",
459
+ " }\n",
460
+ "</style>\n",
461
+ "<table border=\"1\" class=\"dataframe\">\n",
462
+ " <thead>\n",
463
+ " <tr style=\"text-align: right;\">\n",
464
+ " <th></th>\n",
465
+ " <th>cluster</th>\n",
466
+ " <th>n_streets</th>\n",
467
+ " </tr>\n",
468
+ " </thead>\n",
469
+ " <tbody>\n",
470
+ " <tr>\n",
471
+ " <th>0</th>\n",
472
+ " <td>0</td>\n",
473
+ " <td>3</td>\n",
474
+ " </tr>\n",
475
+ " <tr>\n",
476
+ " <th>1</th>\n",
477
+ " <td>1</td>\n",
478
+ " <td>2</td>\n",
479
+ " </tr>\n",
480
+ " <tr>\n",
481
+ " <th>2</th>\n",
482
+ " <td>2</td>\n",
483
+ " <td>5</td>\n",
484
+ " </tr>\n",
485
+ " <tr>\n",
486
+ " <th>3</th>\n",
487
+ " <td>3</td>\n",
488
+ " <td>5</td>\n",
489
+ " </tr>\n",
490
+ " </tbody>\n",
491
+ "</table>\n",
492
+ "</div>"
493
+ ],
494
+ "text/plain": [
495
+ " cluster n_streets\n",
496
+ "0 0 3\n",
497
+ "1 1 2\n",
498
+ "2 2 5\n",
499
+ "3 3 5"
500
+ ]
501
+ },
502
+ "metadata": {},
503
+ "output_type": "display_data"
504
+ },
505
+ {
506
+ "name": "stdout",
507
+ "output_type": "stream",
508
+ "text": [
509
+ "Saved figure: ./ml_figs\\cluster_sizes_bar.png\n",
510
+ "Saved table: ./ml_tables\\cluster_assignments.csv\n"
511
+ ]
512
+ }
513
+ ],
514
+ "source": [
515
+ "# Build mode share per street (origin)\n",
516
+ "mode_pvt = trips.pivot_table(index='origin_street_id', columns='mode', values='trip_id', aggfunc='count', fill_value=0)\n",
517
+ "mode_share = mode_pvt.div(mode_pvt.sum(axis=1).replace(0,1), axis=0)\n",
518
+ "\n",
519
+ "# Try several k and pick a reasonable one (elbow heuristic)\n",
520
+ "inertias = []\n",
521
+ "ks = list(range(2, 9))\n",
522
+ "for k in ks:\n",
523
+ " km = KMeans(n_clusters=k, random_state=42, n_init=10)\n",
524
+ " km.fit(mode_share)\n",
525
+ " inertias.append(km.inertia_)\n",
526
+ "\n",
527
+ "plt.figure(figsize=(6,4))\n",
528
+ "plt.plot(ks, inertias, marker=\"o\")\n",
529
+ "plt.xlabel(\"k\"); plt.ylabel(\"Inertia\")\n",
530
+ "plt.title(\"K-Means Elbow — Mobility Mode Share by Street\")\n",
531
+ "savefig(\"cluster_elbow.png\")\n",
532
+ "\n",
533
+ "# Choose k=4 as a reasonable choice for demonstration\n",
534
+ "k = 4\n",
535
+ "km = KMeans(n_clusters=k, random_state=42, n_init=10)\n",
536
+ "labels = km.fit_predict(mode_share)\n",
537
+ "mode_share_clusters = mode_share.copy()\n",
538
+ "mode_share_clusters['cluster'] = labels\n",
539
+ "\n",
540
+ "# Summarize clusters\n",
541
+ "cluster_sizes = mode_share_clusters['cluster'].value_counts().sort_index().reset_index()\n",
542
+ "cluster_sizes.columns = ['cluster','n_streets']\n",
543
+ "savetab(cluster_sizes, \"cluster_sizes.csv\")\n",
544
+ "display(cluster_sizes)\n",
545
+ "\n",
546
+ "plt.figure(figsize=(6,4))\n",
547
+ "plt.bar(cluster_sizes['cluster'], cluster_sizes['n_streets'])\n",
548
+ "plt.xlabel(\"Cluster\"); plt.ylabel(\"Number of streets\")\n",
549
+ "plt.title(\"Street Clusters by Mobility Signature\")\n",
550
+ "savefig(\"cluster_sizes_bar.png\")\n",
551
+ "\n",
552
+ "# Save cluster assignments\n",
553
+ "assignments = mode_share_clusters.reset_index()[['origin_street_id','cluster']]\n",
554
+ "savetab(assignments, \"cluster_assignments.csv\")"
555
+ ]
556
+ },
557
+ {
558
+ "cell_type": "markdown",
559
+ "id": "9dc1e2af",
560
+ "metadata": {},
561
+ "source": [
562
+ "### Bonus: Interpreting models\n",
563
+ "As a quick interpretability pass, we can look at feature importance from the random forests (MDI)."
564
+ ]
565
+ },
566
+ {
567
+ "cell_type": "code",
568
+ "execution_count": 38,
569
+ "id": "73f43632",
570
+ "metadata": {},
571
+ "outputs": [
572
+ {
573
+ "data": {
574
+ "text/html": [
575
+ "<div>\n",
576
+ "<style scoped>\n",
577
+ " .dataframe tbody tr th:only-of-type {\n",
578
+ " vertical-align: middle;\n",
579
+ " }\n",
580
+ "\n",
581
+ " .dataframe tbody tr th {\n",
582
+ " vertical-align: top;\n",
583
+ " }\n",
584
+ "\n",
585
+ " .dataframe thead th {\n",
586
+ " text-align: right;\n",
587
+ " }\n",
588
+ "</style>\n",
589
+ "<table border=\"1\" class=\"dataframe\">\n",
590
+ " <thead>\n",
591
+ " <tr style=\"text-align: right;\">\n",
592
+ " <th></th>\n",
593
+ " <th>feature</th>\n",
594
+ " <th>importance</th>\n",
595
+ " </tr>\n",
596
+ " </thead>\n",
597
+ " <tbody>\n",
598
+ " <tr>\n",
599
+ " <th>0</th>\n",
600
+ " <td>temp_c</td>\n",
601
+ " <td>0.302091</td>\n",
602
+ " </tr>\n",
603
+ " <tr>\n",
604
+ " <th>1</th>\n",
605
+ " <td>wind_kph</td>\n",
606
+ " <td>0.219432</td>\n",
607
+ " </tr>\n",
608
+ " <tr>\n",
609
+ " <th>2</th>\n",
610
+ " <td>month</td>\n",
611
+ " <td>0.188248</td>\n",
612
+ " </tr>\n",
613
+ " <tr>\n",
614
+ " <th>3</th>\n",
615
+ " <td>precip_mm</td>\n",
616
+ " <td>0.082657</td>\n",
617
+ " </tr>\n",
618
+ " <tr>\n",
619
+ " <th>4</th>\n",
620
+ " <td>snow_cm</td>\n",
621
+ " <td>0.044882</td>\n",
622
+ " </tr>\n",
623
+ " <tr>\n",
624
+ " <th>5</th>\n",
625
+ " <td>reported_by_sensor</td>\n",
626
+ " <td>0.017501</td>\n",
627
+ " </tr>\n",
628
+ " <tr>\n",
629
+ " <th>6</th>\n",
630
+ " <td>reported_by_officer</td>\n",
631
+ " <td>0.016649</td>\n",
632
+ " </tr>\n",
633
+ " <tr>\n",
634
+ " <th>7</th>\n",
635
+ " <td>reported_by_citizen</td>\n",
636
+ " <td>0.016428</td>\n",
637
+ " </tr>\n",
638
+ " <tr>\n",
639
+ " <th>8</th>\n",
640
+ " <td>category_animal</td>\n",
641
+ " <td>0.012986</td>\n",
642
+ " </tr>\n",
643
+ " <tr>\n",
644
+ " <th>9</th>\n",
645
+ " <td>category_theft</td>\n",
646
+ " <td>0.012825</td>\n",
647
+ " </tr>\n",
648
+ " <tr>\n",
649
+ " <th>10</th>\n",
650
+ " <td>category_disturbance</td>\n",
651
+ " <td>0.012002</td>\n",
652
+ " </tr>\n",
653
+ " <tr>\n",
654
+ " <th>11</th>\n",
655
+ " <td>category_noise</td>\n",
656
+ " <td>0.011956</td>\n",
657
+ " </tr>\n",
658
+ " <tr>\n",
659
+ " <th>12</th>\n",
660
+ " <td>category_other</td>\n",
661
+ " <td>0.011694</td>\n",
662
+ " </tr>\n",
663
+ " <tr>\n",
664
+ " <th>13</th>\n",
665
+ " <td>category_vandalism</td>\n",
666
+ " <td>0.010977</td>\n",
667
+ " </tr>\n",
668
+ " <tr>\n",
669
+ " <th>14</th>\n",
670
+ " <td>category_traffic</td>\n",
671
+ " <td>0.010530</td>\n",
672
+ " </tr>\n",
673
+ " <tr>\n",
674
+ " <th>15</th>\n",
675
+ " <td>has_bike_infra_True</td>\n",
676
+ " <td>0.010157</td>\n",
677
+ " </tr>\n",
678
+ " <tr>\n",
679
+ " <th>16</th>\n",
680
+ " <td>has_bike_infra_False</td>\n",
681
+ " <td>0.009653</td>\n",
682
+ " </tr>\n",
683
+ " <tr>\n",
684
+ " <th>17</th>\n",
685
+ " <td>heatwave_False</td>\n",
686
+ " <td>0.004153</td>\n",
687
+ " </tr>\n",
688
+ " <tr>\n",
689
+ " <th>18</th>\n",
690
+ " <td>heatwave_nan</td>\n",
691
+ " <td>0.002672</td>\n",
692
+ " </tr>\n",
693
+ " <tr>\n",
694
+ " <th>19</th>\n",
695
+ " <td>heatwave_True</td>\n",
696
+ " <td>0.002508</td>\n",
697
+ " </tr>\n",
698
+ " </tbody>\n",
699
+ "</table>\n",
700
+ "</div>"
701
+ ],
702
+ "text/plain": [
703
+ " feature importance\n",
704
+ "0 temp_c 0.302091\n",
705
+ "1 wind_kph 0.219432\n",
706
+ "2 month 0.188248\n",
707
+ "3 precip_mm 0.082657\n",
708
+ "4 snow_cm 0.044882\n",
709
+ "5 reported_by_sensor 0.017501\n",
710
+ "6 reported_by_officer 0.016649\n",
711
+ "7 reported_by_citizen 0.016428\n",
712
+ "8 category_animal 0.012986\n",
713
+ "9 category_theft 0.012825\n",
714
+ "10 category_disturbance 0.012002\n",
715
+ "11 category_noise 0.011956\n",
716
+ "12 category_other 0.011694\n",
717
+ "13 category_vandalism 0.010977\n",
718
+ "14 category_traffic 0.010530\n",
719
+ "15 has_bike_infra_True 0.010157\n",
720
+ "16 has_bike_infra_False 0.009653\n",
721
+ "17 heatwave_False 0.004153\n",
722
+ "18 heatwave_nan 0.002672\n",
723
+ "19 heatwave_True 0.002508"
724
+ ]
725
+ },
726
+ "metadata": {},
727
+ "output_type": "display_data"
728
+ },
729
+ {
730
+ "name": "stdout",
731
+ "output_type": "stream",
732
+ "text": [
733
+ "Saved table: ./ml_tables\\clf_top_feature_importances.csv\n",
734
+ "Saved figure: ./ml_figs\\clf_feature_importances.png\n"
735
+ ]
736
+ },
737
+ {
738
+ "data": {
739
+ "text/html": [
740
+ "<div>\n",
741
+ "<style scoped>\n",
742
+ " .dataframe tbody tr th:only-of-type {\n",
743
+ " vertical-align: middle;\n",
744
+ " }\n",
745
+ "\n",
746
+ " .dataframe tbody tr th {\n",
747
+ " vertical-align: top;\n",
748
+ " }\n",
749
+ "\n",
750
+ " .dataframe thead th {\n",
751
+ " text-align: right;\n",
752
+ " }\n",
753
+ "</style>\n",
754
+ "<table border=\"1\" class=\"dataframe\">\n",
755
+ " <thead>\n",
756
+ " <tr style=\"text-align: right;\">\n",
757
+ " <th></th>\n",
758
+ " <th>feature</th>\n",
759
+ " <th>importance</th>\n",
760
+ " </tr>\n",
761
+ " </thead>\n",
762
+ " <tbody>\n",
763
+ " <tr>\n",
764
+ " <th>0</th>\n",
765
+ " <td>precip_mm</td>\n",
766
+ " <td>0.231075</td>\n",
767
+ " </tr>\n",
768
+ " <tr>\n",
769
+ " <th>1</th>\n",
770
+ " <td>temp_c</td>\n",
771
+ " <td>0.223292</td>\n",
772
+ " </tr>\n",
773
+ " <tr>\n",
774
+ " <th>2</th>\n",
775
+ " <td>snow_cm</td>\n",
776
+ " <td>0.115154</td>\n",
777
+ " </tr>\n",
778
+ " <tr>\n",
779
+ " <th>3</th>\n",
780
+ " <td>wind_kph</td>\n",
781
+ " <td>0.098303</td>\n",
782
+ " </tr>\n",
783
+ " <tr>\n",
784
+ " <th>4</th>\n",
785
+ " <td>month</td>\n",
786
+ " <td>0.075172</td>\n",
787
+ " </tr>\n",
788
+ " <tr>\n",
789
+ " <th>5</th>\n",
790
+ " <td>r__vehicles_per_day</td>\n",
791
+ " <td>0.069528</td>\n",
792
+ " </tr>\n",
793
+ " <tr>\n",
794
+ " <th>6</th>\n",
795
+ " <td>r__bikes_per_day</td>\n",
796
+ " <td>0.068437</td>\n",
797
+ " </tr>\n",
798
+ " <tr>\n",
799
+ " <th>7</th>\n",
800
+ " <td>r__peds_per_day</td>\n",
801
+ " <td>0.066777</td>\n",
802
+ " </tr>\n",
803
+ " <tr>\n",
804
+ " <th>8</th>\n",
805
+ " <td>heatwave_nan</td>\n",
806
+ " <td>0.048992</td>\n",
807
+ " </tr>\n",
808
+ " <tr>\n",
809
+ " <th>9</th>\n",
810
+ " <td>heatwave_False</td>\n",
811
+ " <td>0.001682</td>\n",
812
+ " </tr>\n",
813
+ " <tr>\n",
814
+ " <th>10</th>\n",
815
+ " <td>heatwave_True</td>\n",
816
+ " <td>0.001590</td>\n",
817
+ " </tr>\n",
818
+ " </tbody>\n",
819
+ "</table>\n",
820
+ "</div>"
821
+ ],
822
+ "text/plain": [
823
+ " feature importance\n",
824
+ "0 precip_mm 0.231075\n",
825
+ "1 temp_c 0.223292\n",
826
+ "2 snow_cm 0.115154\n",
827
+ "3 wind_kph 0.098303\n",
828
+ "4 month 0.075172\n",
829
+ "5 r__vehicles_per_day 0.069528\n",
830
+ "6 r__bikes_per_day 0.068437\n",
831
+ "7 r__peds_per_day 0.066777\n",
832
+ "8 heatwave_nan 0.048992\n",
833
+ "9 heatwave_False 0.001682\n",
834
+ "10 heatwave_True 0.001590"
835
+ ]
836
+ },
837
+ "metadata": {},
838
+ "output_type": "display_data"
839
+ },
840
+ {
841
+ "name": "stdout",
842
+ "output_type": "stream",
843
+ "text": [
844
+ "Saved table: ./ml_tables\\regr_top_feature_importances.csv\n",
845
+ "Saved figure: ./ml_figs\\regr_feature_importances.png\n"
846
+ ]
847
+ }
848
+ ],
849
+ "source": [
850
+ "# Extract MDI importances from pipelines (requires access to transformed feature names)\n",
851
+ "def get_feature_names(preprocessor, num_cols, cat_cols, X):\n",
852
+ " num_feats = num_cols\n",
853
+ " # OneHot names\n",
854
+ " oh = preprocessor.named_transformers_['cat']\n",
855
+ " cat_names = list(oh.get_feature_names_out(cat_cols))\n",
856
+ " return list(num_feats) + cat_names\n",
857
+ "\n",
858
+ "# Classification importances\n",
859
+ "try:\n",
860
+ " clf_model = clf.named_steps['rf']\n",
861
+ " feat_names = get_feature_names(clf.named_steps['pre'], \n",
862
+ " ['temp_c','precip_mm','snow_cm','wind_kph','month'],\n",
863
+ " ['category','reported_by','heatwave','has_bike_infra'],\n",
864
+ " X_train)\n",
865
+ " imp = pd.Series(clf_model.feature_importances_, index=feat_names).sort_values(ascending=False)\n",
866
+ " top_imp = imp.head(20).reset_index()\n",
867
+ " top_imp.columns = ['feature','importance']\n",
868
+ " display(top_imp)\n",
869
+ " savetab(top_imp, \"clf_top_feature_importances.csv\")\n",
870
+ "\n",
871
+ " plt.figure(figsize=(8,5))\n",
872
+ " plt.barh(top_imp['feature'][::-1], top_imp['importance'][::-1])\n",
873
+ " plt.title(\"Top Feature Importances — Incident Severity RF\")\n",
874
+ " plt.xlabel(\"Importance\")\n",
875
+ " savefig(\"clf_feature_importances.png\")\n",
876
+ "except Exception as e:\n",
877
+ " print(\"Could not compute classification importances:\", e)\n",
878
+ "\n",
879
+ "# Regression importances\n",
880
+ "try:\n",
881
+ " regr_model = regr.named_steps['rf']\n",
882
+ " feat_names = get_feature_names(regr.named_steps['pre'],\n",
883
+ " ['temp_c','precip_mm','snow_cm','wind_kph','month','r__vehicles_per_day','r__bikes_per_day','r__peds_per_day'],\n",
884
+ " ['heatwave'],\n",
885
+ " X_train)\n",
886
+ " imp = pd.Series(regr_model.feature_importances_, index=feat_names).sort_values(ascending=False)\n",
887
+ " top_imp = imp.head(20).reset_index()\n",
888
+ " top_imp.columns = ['feature','importance']\n",
889
+ " display(top_imp)\n",
890
+ " savetab(top_imp, \"regr_top_feature_importances.csv\")\n",
891
+ "\n",
892
+ " plt.figure(figsize=(8,5))\n",
893
+ " plt.barh(top_imp['feature'][::-1], top_imp['importance'][::-1])\n",
894
+ " plt.title(\"Top Feature Importances — Noise RF\")\n",
895
+ " plt.xlabel(\"Importance\")\n",
896
+ " savefig(\"regr_feature_importances.png\")\n",
897
+ "except Exception as e:\n",
898
+ " print(\"Could not compute regression importances:\", e)"
899
+ ]
900
+ },
901
+ {
902
+ "cell_type": "markdown",
903
+ "id": "0963228d",
904
+ "metadata": {},
905
+ "source": [
906
+ "### Next ideas\n",
907
+ "- Use **time-based splits** (train on early years, test on later) for more realistic forecasting.\n",
908
+ "- Try **Gradient Boosting** or **XGBoost/LightGBM** for stronger baselines.\n",
909
+ "- Add **spatial features** (distance to parks, density of POIs) for richer models.\n",
910
+ "- Package results into an **HTML report** or a small **Streamlit** app."
911
+ ]
912
+ }
913
+ ],
914
+ "metadata": {
915
+ "kernelspec": {
916
+ "display_name": "Python 3 (ipykernel)",
917
+ "language": "python",
918
+ "name": "python3"
919
+ },
920
+ "language_info": {
921
+ "codemirror_mode": {
922
+ "name": "ipython",
923
+ "version": 3
924
+ },
925
+ "file_extension": ".py",
926
+ "mimetype": "text/x-python",
927
+ "name": "python",
928
+ "nbconvert_exporter": "python",
929
+ "pygments_lexer": "ipython3",
930
+ "version": "3.12.7"
931
+ }
932
+ },
933
+ "nbformat": 4,
934
+ "nbformat_minor": 5
935
+ }
DBbun_Davis_analytics_demo.ipynb ADDED
@@ -0,0 +1,1591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "b72504e7",
6
+ "metadata": {},
7
+ "source": [
8
+ "# DBbun Davis — Medium Demo Notebook\n",
9
+ "This notebook loads the synthetic **Davis Square** dataset and produces attractive, saved-to-disk figures and tables.\n",
10
+ "\n",
11
+ "## How to use\n",
12
+ "1. Generate the dataset first (recommended **medium** size): \n",
13
+ " ```bash\n",
14
+ " python make_davis_square.py --size medium --seed 42 --out ./out_dbbun_davis_medium\n",
15
+ " ```\n",
16
+ "2. Update `DATA_DIR` below to point to your output folder.\n",
17
+ "3. Run all cells. All figures will be saved to `FIGS_DIR`, and summary tables to `TABLES_DIR`.\n"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": 9,
23
+ "id": "2ba10144",
24
+ "metadata": {},
25
+ "outputs": [
26
+ {
27
+ "name": "stdout",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "All expected files found.\n"
31
+ ]
32
+ }
33
+ ],
34
+ "source": [
35
+ "# --- User config ---\n",
36
+ "#DATA_DIR = \"./out_dbbun_davis_medium\" # <-- change if needed\n",
37
+ "DATA_DIR = \"./\"\n",
38
+ "FIGS_DIR = \"./figs\"\n",
39
+ "TABLES_DIR = \"./tables\"\n",
40
+ "\n",
41
+ "# --- Imports & setup ---\n",
42
+ "import os\n",
43
+ "import pandas as pd\n",
44
+ "import numpy as np\n",
45
+ "import matplotlib.pyplot as plt\n",
46
+ "import json\n",
47
+ "\n",
48
+ "os.makedirs(FIGS_DIR, exist_ok=True)\n",
49
+ "os.makedirs(TABLES_DIR, exist_ok=True)\n",
50
+ "\n",
51
+ "def savefig(name):\n",
52
+ " path = os.path.join(FIGS_DIR, name)\n",
53
+ " plt.savefig(path, bbox_inches=\"tight\", dpi=144)\n",
54
+ " plt.close()\n",
55
+ " print(f\"Saved figure: {path}\")\n",
56
+ "\n",
57
+ "def savetab(df, name):\n",
58
+ " path = os.path.join(TABLES_DIR, name)\n",
59
+ " df.to_csv(path, index=False)\n",
60
+ " print(f\"Saved table: {path}\")\n",
61
+ "\n",
62
+ "# Verify required files exist\n",
63
+ "required_files = [\n",
64
+ " \"geo_streets.csv\",\"geo_parks.csv\",\"poi_generic.csv\",\"households.csv\",\n",
65
+ " \"pets_registry.csv\",\"pet_incidents.csv\",\"mobility_trips.csv\",\"public_safety.csv\",\n",
66
+ " \"events_civic.csv\",\"observations.csv\",\"transit_lines.csv\",\"transit_stops.csv\",\n",
67
+ " \"transit_ridership_daily.csv\",\"bike_infra.csv\",\"traffic_counts.csv\",\n",
68
+ " \"prices_index.csv\",\"weather_daily.csv\",\"trees_inventory.csv\",\n",
69
+ " \"infrastructure_events.csv\",\"building_issues.csv\",\"DATA_DICTIONARY.json\"\n",
70
+ "]\n",
71
+ "missing = [f for f in required_files if not os.path.exists(os.path.join(DATA_DIR, f))]\n",
72
+ "if missing:\n",
73
+ " print(\"WARNING: Missing files (update DATA_DIR or regenerate dataset):\")\n",
74
+ " for m in missing:\n",
75
+ " print(\" -\", m)\n",
76
+ "else:\n",
77
+ " print(\"All expected files found.\")"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": 10,
83
+ "id": "39136d91-c63f-4e18-b8c5-fd77f95305bc",
84
+ "metadata": {},
85
+ "outputs": [
86
+ {
87
+ "name": "stdout",
88
+ "output_type": "stream",
89
+ "text": [
90
+ "['.ipynb_checkpoints', 'bike_infra.csv', 'building_issues.csv', 'DATA_DICTIONARY.json', 'DBbun_Davis_medium_demo.ipynb', 'events_civic.csv', 'figs', 'geo_parks.csv', 'geo_streets.csv', 'households.csv']\n"
91
+ ]
92
+ }
93
+ ],
94
+ "source": [
95
+ "import os\n",
96
+ "print(os.listdir(DATA_DIR)[:10])"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": 11,
102
+ "id": "8bcd1b10",
103
+ "metadata": {},
104
+ "outputs": [
105
+ {
106
+ "data": {
107
+ "text/html": [
108
+ "<div>\n",
109
+ "<style scoped>\n",
110
+ " .dataframe tbody tr th:only-of-type {\n",
111
+ " vertical-align: middle;\n",
112
+ " }\n",
113
+ "\n",
114
+ " .dataframe tbody tr th {\n",
115
+ " vertical-align: top;\n",
116
+ " }\n",
117
+ "\n",
118
+ " .dataframe thead th {\n",
119
+ " text-align: right;\n",
120
+ " }\n",
121
+ "</style>\n",
122
+ "<table border=\"1\" class=\"dataframe\">\n",
123
+ " <thead>\n",
124
+ " <tr style=\"text-align: right;\">\n",
125
+ " <th></th>\n",
126
+ " <th>table</th>\n",
127
+ " <th>rows</th>\n",
128
+ " </tr>\n",
129
+ " </thead>\n",
130
+ " <tbody>\n",
131
+ " <tr>\n",
132
+ " <th>0</th>\n",
133
+ " <td>streets</td>\n",
134
+ " <td>15</td>\n",
135
+ " </tr>\n",
136
+ " <tr>\n",
137
+ " <th>1</th>\n",
138
+ " <td>parks</td>\n",
139
+ " <td>4</td>\n",
140
+ " </tr>\n",
141
+ " <tr>\n",
142
+ " <th>2</th>\n",
143
+ " <td>poi</td>\n",
144
+ " <td>19</td>\n",
145
+ " </tr>\n",
146
+ " <tr>\n",
147
+ " <th>3</th>\n",
148
+ " <td>households</td>\n",
149
+ " <td>8000</td>\n",
150
+ " </tr>\n",
151
+ " <tr>\n",
152
+ " <th>4</th>\n",
153
+ " <td>pets</td>\n",
154
+ " <td>3213</td>\n",
155
+ " </tr>\n",
156
+ " <tr>\n",
157
+ " <th>5</th>\n",
158
+ " <td>pet_inc</td>\n",
159
+ " <td>338</td>\n",
160
+ " </tr>\n",
161
+ " <tr>\n",
162
+ " <th>6</th>\n",
163
+ " <td>trips</td>\n",
164
+ " <td>120000</td>\n",
165
+ " </tr>\n",
166
+ " <tr>\n",
167
+ " <th>7</th>\n",
168
+ " <td>safety</td>\n",
169
+ " <td>12000</td>\n",
170
+ " </tr>\n",
171
+ " <tr>\n",
172
+ " <th>8</th>\n",
173
+ " <td>events</td>\n",
174
+ " <td>195</td>\n",
175
+ " </tr>\n",
176
+ " <tr>\n",
177
+ " <th>9</th>\n",
178
+ " <td>obs</td>\n",
179
+ " <td>35000</td>\n",
180
+ " </tr>\n",
181
+ " <tr>\n",
182
+ " <th>10</th>\n",
183
+ " <td>lines</td>\n",
184
+ " <td>4</td>\n",
185
+ " </tr>\n",
186
+ " <tr>\n",
187
+ " <th>11</th>\n",
188
+ " <td>stops</td>\n",
189
+ " <td>4</td>\n",
190
+ " </tr>\n",
191
+ " <tr>\n",
192
+ " <th>12</th>\n",
193
+ " <td>ridership</td>\n",
194
+ " <td>92</td>\n",
195
+ " </tr>\n",
196
+ " <tr>\n",
197
+ " <th>13</th>\n",
198
+ " <td>bike</td>\n",
199
+ " <td>9</td>\n",
200
+ " </tr>\n",
201
+ " <tr>\n",
202
+ " <th>14</th>\n",
203
+ " <td>traffic</td>\n",
204
+ " <td>315</td>\n",
205
+ " </tr>\n",
206
+ " <tr>\n",
207
+ " <th>15</th>\n",
208
+ " <td>prices</td>\n",
209
+ " <td>301</td>\n",
210
+ " </tr>\n",
211
+ " <tr>\n",
212
+ " <th>16</th>\n",
213
+ " <td>weather</td>\n",
214
+ " <td>101136</td>\n",
215
+ " </tr>\n",
216
+ " <tr>\n",
217
+ " <th>17</th>\n",
218
+ " <td>trees</td>\n",
219
+ " <td>79</td>\n",
220
+ " </tr>\n",
221
+ " <tr>\n",
222
+ " <th>18</th>\n",
223
+ " <td>infra</td>\n",
224
+ " <td>253</td>\n",
225
+ " </tr>\n",
226
+ " <tr>\n",
227
+ " <th>19</th>\n",
228
+ " <td>bissues</td>\n",
229
+ " <td>1614</td>\n",
230
+ " </tr>\n",
231
+ " </tbody>\n",
232
+ "</table>\n",
233
+ "</div>"
234
+ ],
235
+ "text/plain": [
236
+ " table rows\n",
237
+ "0 streets 15\n",
238
+ "1 parks 4\n",
239
+ "2 poi 19\n",
240
+ "3 households 8000\n",
241
+ "4 pets 3213\n",
242
+ "5 pet_inc 338\n",
243
+ "6 trips 120000\n",
244
+ "7 safety 12000\n",
245
+ "8 events 195\n",
246
+ "9 obs 35000\n",
247
+ "10 lines 4\n",
248
+ "11 stops 4\n",
249
+ "12 ridership 92\n",
250
+ "13 bike 9\n",
251
+ "14 traffic 315\n",
252
+ "15 prices 301\n",
253
+ "16 weather 101136\n",
254
+ "17 trees 79\n",
255
+ "18 infra 253\n",
256
+ "19 bissues 1614"
257
+ ]
258
+ },
259
+ "metadata": {},
260
+ "output_type": "display_data"
261
+ },
262
+ {
263
+ "name": "stdout",
264
+ "output_type": "stream",
265
+ "text": [
266
+ "Saved table: ./tables\\dataset_shapes.csv\n"
267
+ ]
268
+ }
269
+ ],
270
+ "source": [
271
+ "# Load data\n",
272
+ "def load_csv(name):\n",
273
+ " return pd.read_csv(os.path.join(DATA_DIR, name))\n",
274
+ "\n",
275
+ "streets = load_csv(\"geo_streets.csv\")\n",
276
+ "parks = load_csv(\"geo_parks.csv\")\n",
277
+ "poi = load_csv(\"poi_generic.csv\")\n",
278
+ "households = load_csv(\"households.csv\")\n",
279
+ "pets = load_csv(\"pets_registry.csv\")\n",
280
+ "pet_inc = load_csv(\"pet_incidents.csv\")\n",
281
+ "trips = load_csv(\"mobility_trips.csv\")\n",
282
+ "safety = load_csv(\"public_safety.csv\")\n",
283
+ "events = load_csv(\"events_civic.csv\")\n",
284
+ "obs = load_csv(\"observations.csv\")\n",
285
+ "lines = load_csv(\"transit_lines.csv\")\n",
286
+ "stops = load_csv(\"transit_stops.csv\")\n",
287
+ "ridership = load_csv(\"transit_ridership_daily.csv\")\n",
288
+ "bike = load_csv(\"bike_infra.csv\")\n",
289
+ "traffic = load_csv(\"traffic_counts.csv\")\n",
290
+ "prices = load_csv(\"prices_index.csv\")\n",
291
+ "weather = load_csv(\"weather_daily.csv\")\n",
292
+ "trees = load_csv(\"trees_inventory.csv\")\n",
293
+ "infra = load_csv(\"infrastructure_events.csv\")\n",
294
+ "bissues = load_csv(\"building_issues.csv\")\n",
295
+ "\n",
296
+ "with open(os.path.join(DATA_DIR, \"DATA_DICTIONARY.json\"), \"r\", encoding=\"utf-8\") as f:\n",
297
+ " dd = json.load(f)\n",
298
+ "\n",
299
+ "# Peek sizes\n",
300
+ "summary_shapes = pd.DataFrame({\n",
301
+ " \"table\": [\"streets\",\"parks\",\"poi\",\"households\",\"pets\",\"pet_inc\",\"trips\",\"safety\",\"events\",\"obs\",\n",
302
+ " \"lines\",\"stops\",\"ridership\",\"bike\",\"traffic\",\"prices\",\"weather\",\"trees\",\"infra\",\"bissues\"],\n",
303
+ " \"rows\": [len(streets),len(parks),len(poi),len(households),len(pets),len(pet_inc),\n",
304
+ " len(trips),len(safety),len(events),len(obs),len(lines),len(stops),\n",
305
+ " len(ridership),len(bike),len(traffic),len(prices),len(weather),len(trees),len(infra),len(bissues)]\n",
306
+ "})\n",
307
+ "display(summary_shapes)\n",
308
+ "savetab(summary_shapes, \"dataset_shapes.csv\")"
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "code",
313
+ "execution_count": 12,
314
+ "id": "54398070",
315
+ "metadata": {},
316
+ "outputs": [
317
+ {
318
+ "name": "stdout",
319
+ "output_type": "stream",
320
+ "text": [
321
+ "Saved figure: ./figs\\01_geo_scatter.png\n"
322
+ ]
323
+ }
324
+ ],
325
+ "source": [
326
+ "import re\n",
327
+ "\n",
328
+ "def wkt_point_to_lonlat(wkt):\n",
329
+ " # expects 'POINT(lon lat)'\n",
330
+ " m = re.match(r\"POINT\\(([-0-9\\.]+)\\s+([-0-9\\.]+)\\)\", str(wkt))\n",
331
+ " if not m:\n",
332
+ " return np.nan, np.nan\n",
333
+ " lon, lat = float(m.group(1)), float(m.group(2))\n",
334
+ " return lon, lat\n",
335
+ "\n",
336
+ "streets[[\"lon\",\"lat\"]] = streets[\"geometry_wkt\"].apply(lambda s: pd.Series(wkt_point_to_lonlat(s)))\n",
337
+ "parks[[\"lon\",\"lat\"]] = parks[\"geometry_wkt\"].apply(lambda s: pd.Series(wkt_point_to_lonlat(s)))\n",
338
+ "\n",
339
+ "# Save quick sample map\n",
340
+ "plt.figure(figsize=(6,6))\n",
341
+ "plt.scatter(streets[\"lon\"], streets[\"lat\"], s=12, alpha=0.7)\n",
342
+ "plt.scatter(parks[\"lon\"], parks[\"lat\"], s=40, marker=\"^\", alpha=0.9)\n",
343
+ "plt.title(\"Synthetic Geo Points — Streets & Parks (WKT)\")\n",
344
+ "plt.xlabel(\"Longitude\"); plt.ylabel(\"Latitude\")\n",
345
+ "savefig(\"01_geo_scatter.png\")"
346
+ ]
347
+ },
348
+ {
349
+ "cell_type": "code",
350
+ "execution_count": 13,
351
+ "id": "c3230d2c",
352
+ "metadata": {},
353
+ "outputs": [
354
+ {
355
+ "data": {
356
+ "text/html": [
357
+ "<div>\n",
358
+ "<style scoped>\n",
359
+ " .dataframe tbody tr th:only-of-type {\n",
360
+ " vertical-align: middle;\n",
361
+ " }\n",
362
+ "\n",
363
+ " .dataframe tbody tr th {\n",
364
+ " vertical-align: top;\n",
365
+ " }\n",
366
+ "\n",
367
+ " .dataframe thead th {\n",
368
+ " text-align: right;\n",
369
+ " }\n",
370
+ "</style>\n",
371
+ "<table border=\"1\" class=\"dataframe\">\n",
372
+ " <thead>\n",
373
+ " <tr style=\"text-align: right;\">\n",
374
+ " <th></th>\n",
375
+ " <th>category</th>\n",
376
+ " <th>subcategory</th>\n",
377
+ " <th>count</th>\n",
378
+ " </tr>\n",
379
+ " </thead>\n",
380
+ " <tbody>\n",
381
+ " <tr>\n",
382
+ " <th>5</th>\n",
383
+ " <td>community_center</td>\n",
384
+ " <td>civic</td>\n",
385
+ " <td>3</td>\n",
386
+ " </tr>\n",
387
+ " <tr>\n",
388
+ " <th>0</th>\n",
389
+ " <td>bakery</td>\n",
390
+ " <td>retail</td>\n",
391
+ " <td>2</td>\n",
392
+ " </tr>\n",
393
+ " <tr>\n",
394
+ " <th>3</th>\n",
395
+ " <td>cafe</td>\n",
396
+ " <td>coffee_tea</td>\n",
397
+ " <td>2</td>\n",
398
+ " </tr>\n",
399
+ " <tr>\n",
400
+ " <th>6</th>\n",
401
+ " <td>hardware</td>\n",
402
+ " <td>retail</td>\n",
403
+ " <td>2</td>\n",
404
+ " </tr>\n",
405
+ " <tr>\n",
406
+ " <th>9</th>\n",
407
+ " <td>post_office</td>\n",
408
+ " <td>civic</td>\n",
409
+ " <td>2</td>\n",
410
+ " </tr>\n",
411
+ " <tr>\n",
412
+ " <th>1</th>\n",
413
+ " <td>bank</td>\n",
414
+ " <td>retail</td>\n",
415
+ " <td>1</td>\n",
416
+ " </tr>\n",
417
+ " <tr>\n",
418
+ " <th>2</th>\n",
419
+ " <td>bar</td>\n",
420
+ " <td>neighborhood</td>\n",
421
+ " <td>1</td>\n",
422
+ " </tr>\n",
423
+ " <tr>\n",
424
+ " <th>4</th>\n",
425
+ " <td>clinic</td>\n",
426
+ " <td>primary</td>\n",
427
+ " <td>1</td>\n",
428
+ " </tr>\n",
429
+ " <tr>\n",
430
+ " <th>7</th>\n",
431
+ " <td>pharmacy</td>\n",
432
+ " <td>retail</td>\n",
433
+ " <td>1</td>\n",
434
+ " </tr>\n",
435
+ " <tr>\n",
436
+ " <th>8</th>\n",
437
+ " <td>playground</td>\n",
438
+ " <td>standard</td>\n",
439
+ " <td>1</td>\n",
440
+ " </tr>\n",
441
+ " <tr>\n",
442
+ " <th>10</th>\n",
443
+ " <td>school</td>\n",
444
+ " <td>public</td>\n",
445
+ " <td>1</td>\n",
446
+ " </tr>\n",
447
+ " <tr>\n",
448
+ " <th>11</th>\n",
449
+ " <td>shelter</td>\n",
450
+ " <td>animal</td>\n",
451
+ " <td>1</td>\n",
452
+ " </tr>\n",
453
+ " <tr>\n",
454
+ " <th>12</th>\n",
455
+ " <td>urgent_care</td>\n",
456
+ " <td>clinic</td>\n",
457
+ " <td>1</td>\n",
458
+ " </tr>\n",
459
+ " </tbody>\n",
460
+ "</table>\n",
461
+ "</div>"
462
+ ],
463
+ "text/plain": [
464
+ " category subcategory count\n",
465
+ "5 community_center civic 3\n",
466
+ "0 bakery retail 2\n",
467
+ "3 cafe coffee_tea 2\n",
468
+ "6 hardware retail 2\n",
469
+ "9 post_office civic 2\n",
470
+ "1 bank retail 1\n",
471
+ "2 bar neighborhood 1\n",
472
+ "4 clinic primary 1\n",
473
+ "7 pharmacy retail 1\n",
474
+ "8 playground standard 1\n",
475
+ "10 school public 1\n",
476
+ "11 shelter animal 1\n",
477
+ "12 urgent_care clinic 1"
478
+ ]
479
+ },
480
+ "metadata": {},
481
+ "output_type": "display_data"
482
+ },
483
+ {
484
+ "name": "stdout",
485
+ "output_type": "stream",
486
+ "text": [
487
+ "Saved table: ./tables\\poi_mix.csv\n",
488
+ "Saved figure: ./figs\\02_poi_category_bar.png\n"
489
+ ]
490
+ }
491
+ ],
492
+ "source": [
493
+ "poi_mix = poi.groupby([\"category\",\"subcategory\"])[\"poi_id\"].count().reset_index(name=\"count\").sort_values(\"count\", ascending=False)\n",
494
+ "display(poi_mix.head(20))\n",
495
+ "savetab(poi_mix, \"poi_mix.csv\")\n",
496
+ "\n",
497
+ "plt.figure(figsize=(8,4))\n",
498
+ "topcats = poi_mix.groupby(\"category\")[\"count\"].sum().sort_values(ascending=False).head(10)\n",
499
+ "topcats.plot(kind=\"bar\")\n",
500
+ "plt.title(\"POI by Category (Top 10)\")\n",
501
+ "plt.xlabel(\"Category\"); plt.ylabel(\"Count\")\n",
502
+ "savefig(\"02_poi_category_bar.png\")"
503
+ ]
504
+ },
505
+ {
506
+ "cell_type": "code",
507
+ "execution_count": 14,
508
+ "id": "ab0b40ad",
509
+ "metadata": {},
510
+ "outputs": [
511
+ {
512
+ "data": {
513
+ "text/html": [
514
+ "<div>\n",
515
+ "<style scoped>\n",
516
+ " .dataframe tbody tr th:only-of-type {\n",
517
+ " vertical-align: middle;\n",
518
+ " }\n",
519
+ "\n",
520
+ " .dataframe tbody tr th {\n",
521
+ " vertical-align: top;\n",
522
+ " }\n",
523
+ "\n",
524
+ " .dataframe thead th {\n",
525
+ " text-align: right;\n",
526
+ " }\n",
527
+ "</style>\n",
528
+ "<table border=\"1\" class=\"dataframe\">\n",
529
+ " <thead>\n",
530
+ " <tr style=\"text-align: right;\">\n",
531
+ " <th></th>\n",
532
+ " <th>era</th>\n",
533
+ " <th>dwelling_type</th>\n",
534
+ " <th>tenure</th>\n",
535
+ " <th>n</th>\n",
536
+ " </tr>\n",
537
+ " </thead>\n",
538
+ " <tbody>\n",
539
+ " <tr>\n",
540
+ " <th>0</th>\n",
541
+ " <td>1800s</td>\n",
542
+ " <td>apartment</td>\n",
543
+ " <td>own</td>\n",
544
+ " <td>185</td>\n",
545
+ " </tr>\n",
546
+ " <tr>\n",
547
+ " <th>1</th>\n",
548
+ " <td>1800s</td>\n",
549
+ " <td>apartment</td>\n",
550
+ " <td>rent</td>\n",
551
+ " <td>149</td>\n",
552
+ " </tr>\n",
553
+ " <tr>\n",
554
+ " <th>2</th>\n",
555
+ " <td>1800s</td>\n",
556
+ " <td>condo</td>\n",
557
+ " <td>own</td>\n",
558
+ " <td>174</td>\n",
559
+ " </tr>\n",
560
+ " <tr>\n",
561
+ " <th>3</th>\n",
562
+ " <td>1800s</td>\n",
563
+ " <td>condo</td>\n",
564
+ " <td>rent</td>\n",
565
+ " <td>165</td>\n",
566
+ " </tr>\n",
567
+ " <tr>\n",
568
+ " <th>4</th>\n",
569
+ " <td>1800s</td>\n",
570
+ " <td>single_family</td>\n",
571
+ " <td>own</td>\n",
572
+ " <td>156</td>\n",
573
+ " </tr>\n",
574
+ " <tr>\n",
575
+ " <th>5</th>\n",
576
+ " <td>1800s</td>\n",
577
+ " <td>single_family</td>\n",
578
+ " <td>rent</td>\n",
579
+ " <td>160</td>\n",
580
+ " </tr>\n",
581
+ " <tr>\n",
582
+ " <th>6</th>\n",
583
+ " <td>1800s</td>\n",
584
+ " <td>triple_decker</td>\n",
585
+ " <td>own</td>\n",
586
+ " <td>175</td>\n",
587
+ " </tr>\n",
588
+ " <tr>\n",
589
+ " <th>7</th>\n",
590
+ " <td>1800s</td>\n",
591
+ " <td>triple_decker</td>\n",
592
+ " <td>rent</td>\n",
593
+ " <td>139</td>\n",
594
+ " </tr>\n",
595
+ " <tr>\n",
596
+ " <th>8</th>\n",
597
+ " <td>1900-1945</td>\n",
598
+ " <td>apartment</td>\n",
599
+ " <td>own</td>\n",
600
+ " <td>172</td>\n",
601
+ " </tr>\n",
602
+ " <tr>\n",
603
+ " <th>9</th>\n",
604
+ " <td>1900-1945</td>\n",
605
+ " <td>apartment</td>\n",
606
+ " <td>rent</td>\n",
607
+ " <td>171</td>\n",
608
+ " </tr>\n",
609
+ " <tr>\n",
610
+ " <th>10</th>\n",
611
+ " <td>1900-1945</td>\n",
612
+ " <td>condo</td>\n",
613
+ " <td>own</td>\n",
614
+ " <td>176</td>\n",
615
+ " </tr>\n",
616
+ " <tr>\n",
617
+ " <th>11</th>\n",
618
+ " <td>1900-1945</td>\n",
619
+ " <td>condo</td>\n",
620
+ " <td>rent</td>\n",
621
+ " <td>179</td>\n",
622
+ " </tr>\n",
623
+ " <tr>\n",
624
+ " <th>12</th>\n",
625
+ " <td>1900-1945</td>\n",
626
+ " <td>single_family</td>\n",
627
+ " <td>own</td>\n",
628
+ " <td>145</td>\n",
629
+ " </tr>\n",
630
+ " <tr>\n",
631
+ " <th>13</th>\n",
632
+ " <td>1900-1945</td>\n",
633
+ " <td>single_family</td>\n",
634
+ " <td>rent</td>\n",
635
+ " <td>163</td>\n",
636
+ " </tr>\n",
637
+ " <tr>\n",
638
+ " <th>14</th>\n",
639
+ " <td>1900-1945</td>\n",
640
+ " <td>triple_decker</td>\n",
641
+ " <td>own</td>\n",
642
+ " <td>172</td>\n",
643
+ " </tr>\n",
644
+ " <tr>\n",
645
+ " <th>15</th>\n",
646
+ " <td>1900-1945</td>\n",
647
+ " <td>triple_decker</td>\n",
648
+ " <td>rent</td>\n",
649
+ " <td>151</td>\n",
650
+ " </tr>\n",
651
+ " <tr>\n",
652
+ " <th>16</th>\n",
653
+ " <td>1946-1999</td>\n",
654
+ " <td>apartment</td>\n",
655
+ " <td>own</td>\n",
656
+ " <td>163</td>\n",
657
+ " </tr>\n",
658
+ " <tr>\n",
659
+ " <th>17</th>\n",
660
+ " <td>1946-1999</td>\n",
661
+ " <td>apartment</td>\n",
662
+ " <td>rent</td>\n",
663
+ " <td>146</td>\n",
664
+ " </tr>\n",
665
+ " <tr>\n",
666
+ " <th>18</th>\n",
667
+ " <td>1946-1999</td>\n",
668
+ " <td>condo</td>\n",
669
+ " <td>own</td>\n",
670
+ " <td>167</td>\n",
671
+ " </tr>\n",
672
+ " <tr>\n",
673
+ " <th>19</th>\n",
674
+ " <td>1946-1999</td>\n",
675
+ " <td>condo</td>\n",
676
+ " <td>rent</td>\n",
677
+ " <td>159</td>\n",
678
+ " </tr>\n",
679
+ " </tbody>\n",
680
+ "</table>\n",
681
+ "</div>"
682
+ ],
683
+ "text/plain": [
684
+ " era dwelling_type tenure n\n",
685
+ "0 1800s apartment own 185\n",
686
+ "1 1800s apartment rent 149\n",
687
+ "2 1800s condo own 174\n",
688
+ "3 1800s condo rent 165\n",
689
+ "4 1800s single_family own 156\n",
690
+ "5 1800s single_family rent 160\n",
691
+ "6 1800s triple_decker own 175\n",
692
+ "7 1800s triple_decker rent 139\n",
693
+ "8 1900-1945 apartment own 172\n",
694
+ "9 1900-1945 apartment rent 171\n",
695
+ "10 1900-1945 condo own 176\n",
696
+ "11 1900-1945 condo rent 179\n",
697
+ "12 1900-1945 single_family own 145\n",
698
+ "13 1900-1945 single_family rent 163\n",
699
+ "14 1900-1945 triple_decker own 172\n",
700
+ "15 1900-1945 triple_decker rent 151\n",
701
+ "16 1946-1999 apartment own 163\n",
702
+ "17 1946-1999 apartment rent 146\n",
703
+ "18 1946-1999 condo own 167\n",
704
+ "19 1946-1999 condo rent 159"
705
+ ]
706
+ },
707
+ "metadata": {},
708
+ "output_type": "display_data"
709
+ },
710
+ {
711
+ "name": "stdout",
712
+ "output_type": "stream",
713
+ "text": [
714
+ "Saved table: ./tables\\households_profile.csv\n",
715
+ "Saved figure: ./figs\\03_households_occupants_hist.png\n"
716
+ ]
717
+ }
718
+ ],
719
+ "source": [
720
+ "hh_profile = households.groupby([\"era\",\"dwelling_type\",\"tenure\"]).size().reset_index(name=\"n\")\n",
721
+ "display(hh_profile.head(20))\n",
722
+ "savetab(hh_profile, \"households_profile.csv\")\n",
723
+ "\n",
724
+ "plt.figure(figsize=(8,4))\n",
725
+ "households[\"occupants\"].plot(kind=\"hist\", bins=20)\n",
726
+ "plt.title(\"Household Occupants — Distribution\")\n",
727
+ "plt.xlabel(\"Occupants\"); plt.ylabel(\"Frequency\")\n",
728
+ "savefig(\"03_households_occupants_hist.png\")"
729
+ ]
730
+ },
731
+ {
732
+ "cell_type": "code",
733
+ "execution_count": 15,
734
+ "id": "ecabf3f1",
735
+ "metadata": {},
736
+ "outputs": [
737
+ {
738
+ "data": {
739
+ "text/html": [
740
+ "<div>\n",
741
+ "<style scoped>\n",
742
+ " .dataframe tbody tr th:only-of-type {\n",
743
+ " vertical-align: middle;\n",
744
+ " }\n",
745
+ "\n",
746
+ " .dataframe tbody tr th {\n",
747
+ " vertical-align: top;\n",
748
+ " }\n",
749
+ "\n",
750
+ " .dataframe thead th {\n",
751
+ " text-align: right;\n",
752
+ " }\n",
753
+ "</style>\n",
754
+ "<table border=\"1\" class=\"dataframe\">\n",
755
+ " <thead>\n",
756
+ " <tr style=\"text-align: right;\">\n",
757
+ " <th></th>\n",
758
+ " <th>species</th>\n",
759
+ " <th>count</th>\n",
760
+ " </tr>\n",
761
+ " </thead>\n",
762
+ " <tbody>\n",
763
+ " <tr>\n",
764
+ " <th>0</th>\n",
765
+ " <td>dog</td>\n",
766
+ " <td>2067</td>\n",
767
+ " </tr>\n",
768
+ " <tr>\n",
769
+ " <th>1</th>\n",
770
+ " <td>cat</td>\n",
771
+ " <td>960</td>\n",
772
+ " </tr>\n",
773
+ " <tr>\n",
774
+ " <th>2</th>\n",
775
+ " <td>other</td>\n",
776
+ " <td>186</td>\n",
777
+ " </tr>\n",
778
+ " </tbody>\n",
779
+ "</table>\n",
780
+ "</div>"
781
+ ],
782
+ "text/plain": [
783
+ " species count\n",
784
+ "0 dog 2067\n",
785
+ "1 cat 960\n",
786
+ "2 other 186"
787
+ ]
788
+ },
789
+ "metadata": {},
790
+ "output_type": "display_data"
791
+ },
792
+ {
793
+ "name": "stdout",
794
+ "output_type": "stream",
795
+ "text": [
796
+ "Saved table: ./tables\\pets_species_counts.csv\n",
797
+ "Saved figure: ./figs\\04_pets_species_bar.png\n"
798
+ ]
799
+ }
800
+ ],
801
+ "source": [
802
+ "pet_species = pets[\"species\"].value_counts().reset_index()\n",
803
+ "pet_species.columns = [\"species\",\"count\"]\n",
804
+ "display(pet_species)\n",
805
+ "savetab(pet_species, \"pets_species_counts.csv\")\n",
806
+ "\n",
807
+ "plt.figure(figsize=(6,4))\n",
808
+ "pet_species.set_index(\"species\")[\"count\"].plot(kind=\"bar\")\n",
809
+ "plt.title(\"Pets by Species\")\n",
810
+ "plt.xlabel(\"Species\"); plt.ylabel(\"Count\")\n",
811
+ "savefig(\"04_pets_species_bar.png\")"
812
+ ]
813
+ },
814
+ {
815
+ "cell_type": "code",
816
+ "execution_count": 16,
817
+ "id": "1478d234",
818
+ "metadata": {},
819
+ "outputs": [
820
+ {
821
+ "data": {
822
+ "text/html": [
823
+ "<div>\n",
824
+ "<style scoped>\n",
825
+ " .dataframe tbody tr th:only-of-type {\n",
826
+ " vertical-align: middle;\n",
827
+ " }\n",
828
+ "\n",
829
+ " .dataframe tbody tr th {\n",
830
+ " vertical-align: top;\n",
831
+ " }\n",
832
+ "\n",
833
+ " .dataframe thead th {\n",
834
+ " text-align: right;\n",
835
+ " }\n",
836
+ "</style>\n",
837
+ "<table border=\"1\" class=\"dataframe\">\n",
838
+ " <thead>\n",
839
+ " <tr style=\"text-align: right;\">\n",
840
+ " <th></th>\n",
841
+ " <th>mode</th>\n",
842
+ " <th>share</th>\n",
843
+ " </tr>\n",
844
+ " </thead>\n",
845
+ " <tbody>\n",
846
+ " <tr>\n",
847
+ " <th>0</th>\n",
848
+ " <td>walk</td>\n",
849
+ " <td>0.329950</td>\n",
850
+ " </tr>\n",
851
+ " <tr>\n",
852
+ " <th>1</th>\n",
853
+ " <td>car</td>\n",
854
+ " <td>0.205342</td>\n",
855
+ " </tr>\n",
856
+ " <tr>\n",
857
+ " <th>2</th>\n",
858
+ " <td>subway</td>\n",
859
+ " <td>0.115433</td>\n",
860
+ " </tr>\n",
861
+ " <tr>\n",
862
+ " <th>3</th>\n",
863
+ " <td>bus</td>\n",
864
+ " <td>0.096825</td>\n",
865
+ " </tr>\n",
866
+ " <tr>\n",
867
+ " <th>4</th>\n",
868
+ " <td>autonomous</td>\n",
869
+ " <td>0.084275</td>\n",
870
+ " </tr>\n",
871
+ " <tr>\n",
872
+ " <th>5</th>\n",
873
+ " <td>bike</td>\n",
874
+ " <td>0.068183</td>\n",
875
+ " </tr>\n",
876
+ " <tr>\n",
877
+ " <th>6</th>\n",
878
+ " <td>streetcar</td>\n",
879
+ " <td>0.046658</td>\n",
880
+ " </tr>\n",
881
+ " <tr>\n",
882
+ " <th>7</th>\n",
883
+ " <td>micromobility</td>\n",
884
+ " <td>0.029967</td>\n",
885
+ " </tr>\n",
886
+ " <tr>\n",
887
+ " <th>8</th>\n",
888
+ " <td>horse</td>\n",
889
+ " <td>0.023367</td>\n",
890
+ " </tr>\n",
891
+ " </tbody>\n",
892
+ "</table>\n",
893
+ "</div>"
894
+ ],
895
+ "text/plain": [
896
+ " mode share\n",
897
+ "0 walk 0.329950\n",
898
+ "1 car 0.205342\n",
899
+ "2 subway 0.115433\n",
900
+ "3 bus 0.096825\n",
901
+ "4 autonomous 0.084275\n",
902
+ "5 bike 0.068183\n",
903
+ "6 streetcar 0.046658\n",
904
+ "7 micromobility 0.029967\n",
905
+ "8 horse 0.023367"
906
+ ]
907
+ },
908
+ "metadata": {},
909
+ "output_type": "display_data"
910
+ },
911
+ {
912
+ "name": "stdout",
913
+ "output_type": "stream",
914
+ "text": [
915
+ "Saved table: ./tables\\mobility_mode_share_overall.csv\n",
916
+ "Saved figure: ./figs\\05_trips_modes_overall_bar.png\n",
917
+ "Saved table: ./tables\\mobility_mode_counts_by_era.csv\n",
918
+ "Saved table: ./tables\\mobility_mode_share_by_era.csv\n",
919
+ "Saved figure: ./figs\\06_trips_by_mode_over_eras_line.png\n"
920
+ ]
921
+ }
922
+ ],
923
+ "source": [
924
+ "mode_share = trips[\"mode\"].value_counts(normalize=True).reset_index()\n",
925
+ "mode_share.columns = [\"mode\",\"share\"]\n",
926
+ "display(mode_share)\n",
927
+ "savetab(mode_share, \"mobility_mode_share_overall.csv\")\n",
928
+ "\n",
929
+ "plt.figure(figsize=(7,4))\n",
930
+ "trips[\"mode\"].value_counts().plot(kind=\"bar\")\n",
931
+ "plt.title(\"Trip Modes — Overall Counts\")\n",
932
+ "plt.xlabel(\"Mode\"); plt.ylabel(\"Trips\")\n",
933
+ "savefig(\"05_trips_modes_overall_bar.png\")\n",
934
+ "\n",
935
+ "mode_era = trips.groupby([\"era\",\"mode\"]).size().unstack(fill_value=0)\n",
936
+ "mode_era_pct = mode_era.div(mode_era.sum(axis=1), axis=0)\n",
937
+ "savetab(mode_era.reset_index(), \"mobility_mode_counts_by_era.csv\")\n",
938
+ "savetab(mode_era_pct.reset_index(), \"mobility_mode_share_by_era.csv\")\n",
939
+ "\n",
940
+ "plt.figure(figsize=(8,5))\n",
941
+ "for m in mode_era.columns:\n",
942
+ " plt.plot(mode_era.index, mode_era[m], marker=\"o\")\n",
943
+ "plt.title(\"Trips by Mode over Eras\")\n",
944
+ "plt.xlabel(\"Era\"); plt.ylabel(\"Count\")\n",
945
+ "plt.xticks(rotation=45, ha=\"right\")\n",
946
+ "savefig(\"06_trips_by_mode_over_eras_line.png\")"
947
+ ]
948
+ },
949
+ {
950
+ "cell_type": "code",
951
+ "execution_count": 17,
952
+ "id": "50bd51c1",
953
+ "metadata": {},
954
+ "outputs": [
955
+ {
956
+ "data": {
957
+ "text/html": [
958
+ "<div>\n",
959
+ "<style scoped>\n",
960
+ " .dataframe tbody tr th:only-of-type {\n",
961
+ " vertical-align: middle;\n",
962
+ " }\n",
963
+ "\n",
964
+ " .dataframe tbody tr th {\n",
965
+ " vertical-align: top;\n",
966
+ " }\n",
967
+ "\n",
968
+ " .dataframe thead th {\n",
969
+ " text-align: right;\n",
970
+ " }\n",
971
+ "</style>\n",
972
+ "<table border=\"1\" class=\"dataframe\">\n",
973
+ " <thead>\n",
974
+ " <tr style=\"text-align: right;\">\n",
975
+ " <th></th>\n",
976
+ " <th>category</th>\n",
977
+ " <th>count</th>\n",
978
+ " </tr>\n",
979
+ " </thead>\n",
980
+ " <tbody>\n",
981
+ " <tr>\n",
982
+ " <th>0</th>\n",
983
+ " <td>traffic</td>\n",
984
+ " <td>1740</td>\n",
985
+ " </tr>\n",
986
+ " <tr>\n",
987
+ " <th>1</th>\n",
988
+ " <td>theft</td>\n",
989
+ " <td>1739</td>\n",
990
+ " </tr>\n",
991
+ " <tr>\n",
992
+ " <th>2</th>\n",
993
+ " <td>noise</td>\n",
994
+ " <td>1735</td>\n",
995
+ " </tr>\n",
996
+ " <tr>\n",
997
+ " <th>3</th>\n",
998
+ " <td>vandalism</td>\n",
999
+ " <td>1720</td>\n",
1000
+ " </tr>\n",
1001
+ " <tr>\n",
1002
+ " <th>4</th>\n",
1003
+ " <td>disturbance</td>\n",
1004
+ " <td>1702</td>\n",
1005
+ " </tr>\n",
1006
+ " <tr>\n",
1007
+ " <th>5</th>\n",
1008
+ " <td>animal</td>\n",
1009
+ " <td>1702</td>\n",
1010
+ " </tr>\n",
1011
+ " <tr>\n",
1012
+ " <th>6</th>\n",
1013
+ " <td>other</td>\n",
1014
+ " <td>1662</td>\n",
1015
+ " </tr>\n",
1016
+ " </tbody>\n",
1017
+ "</table>\n",
1018
+ "</div>"
1019
+ ],
1020
+ "text/plain": [
1021
+ " category count\n",
1022
+ "0 traffic 1740\n",
1023
+ "1 theft 1739\n",
1024
+ "2 noise 1735\n",
1025
+ "3 vandalism 1720\n",
1026
+ "4 disturbance 1702\n",
1027
+ "5 animal 1702\n",
1028
+ "6 other 1662"
1029
+ ]
1030
+ },
1031
+ "metadata": {},
1032
+ "output_type": "display_data"
1033
+ },
1034
+ {
1035
+ "name": "stdout",
1036
+ "output_type": "stream",
1037
+ "text": [
1038
+ "Saved table: ./tables\\safety_incidents_by_category.csv\n",
1039
+ "Saved figure: ./figs\\07_safety_category_bar.png\n"
1040
+ ]
1041
+ }
1042
+ ],
1043
+ "source": [
1044
+ "safety_cat = safety[\"category\"].value_counts().reset_index()\n",
1045
+ "safety_cat.columns = [\"category\",\"count\"]\n",
1046
+ "display(safety_cat)\n",
1047
+ "savetab(safety_cat, \"safety_incidents_by_category.csv\")\n",
1048
+ "\n",
1049
+ "plt.figure(figsize=(7,4))\n",
1050
+ "safety_cat.set_index(\"category\")[\"count\"].plot(kind=\"bar\")\n",
1051
+ "plt.title(\"Public Safety Incidents by Category\")\n",
1052
+ "plt.xlabel(\"Category\"); plt.ylabel(\"Count\")\n",
1053
+ "savefig(\"07_safety_category_bar.png\")"
1054
+ ]
1055
+ },
1056
+ {
1057
+ "cell_type": "code",
1058
+ "execution_count": 18,
1059
+ "id": "c8e99a14",
1060
+ "metadata": {},
1061
+ "outputs": [
1062
+ {
1063
+ "name": "stdout",
1064
+ "output_type": "stream",
1065
+ "text": [
1066
+ "Saved figure: ./figs\\08_noise_hist.png\n",
1067
+ "Saved figure: ./figs\\09_aqi_hist.png\n"
1068
+ ]
1069
+ }
1070
+ ],
1071
+ "source": [
1072
+ "noise = obs[obs[\"metric\"]==\"noise_db\"].copy()\n",
1073
+ "aqi = obs[obs[\"metric\"]==\"aqi\"].copy()\n",
1074
+ "\n",
1075
+ "# Noise distribution\n",
1076
+ "plt.figure(figsize=(7,4))\n",
1077
+ "noise[\"value\"].plot(kind=\"hist\", bins=30)\n",
1078
+ "plt.title(\"Noise (dB) — Distribution\")\n",
1079
+ "plt.xlabel(\"dB\"); plt.ylabel(\"Frequency\")\n",
1080
+ "savefig(\"08_noise_hist.png\")\n",
1081
+ "\n",
1082
+ "# AQI distribution\n",
1083
+ "plt.figure(figsize=(7,4))\n",
1084
+ "aqi[\"value\"].plot(kind=\"hist\", bins=30)\n",
1085
+ "plt.title(\"AQI — Distribution\")\n",
1086
+ "plt.xlabel(\"AQI\"); plt.ylabel(\"Frequency\")\n",
1087
+ "savefig(\"09_aqi_hist.png\")"
1088
+ ]
1089
+ },
1090
+ {
1091
+ "cell_type": "code",
1092
+ "execution_count": 19,
1093
+ "id": "fc79bee7",
1094
+ "metadata": {},
1095
+ "outputs": [
1096
+ {
1097
+ "data": {
1098
+ "text/html": [
1099
+ "<div>\n",
1100
+ "<style scoped>\n",
1101
+ " .dataframe tbody tr th:only-of-type {\n",
1102
+ " vertical-align: middle;\n",
1103
+ " }\n",
1104
+ "\n",
1105
+ " .dataframe tbody tr th {\n",
1106
+ " vertical-align: top;\n",
1107
+ " }\n",
1108
+ "\n",
1109
+ " .dataframe thead th {\n",
1110
+ " text-align: right;\n",
1111
+ " }\n",
1112
+ "</style>\n",
1113
+ "<table border=\"1\" class=\"dataframe\">\n",
1114
+ " <thead>\n",
1115
+ " <tr style=\"text-align: right;\">\n",
1116
+ " <th></th>\n",
1117
+ " <th>year</th>\n",
1118
+ " <th>attendees_est</th>\n",
1119
+ " </tr>\n",
1120
+ " </thead>\n",
1121
+ " <tbody>\n",
1122
+ " <tr>\n",
1123
+ " <th>0</th>\n",
1124
+ " <td>1946</td>\n",
1125
+ " <td>2999</td>\n",
1126
+ " </tr>\n",
1127
+ " <tr>\n",
1128
+ " <th>1</th>\n",
1129
+ " <td>1947</td>\n",
1130
+ " <td>2999</td>\n",
1131
+ " </tr>\n",
1132
+ " <tr>\n",
1133
+ " <th>2</th>\n",
1134
+ " <td>1948</td>\n",
1135
+ " <td>3000</td>\n",
1136
+ " </tr>\n",
1137
+ " <tr>\n",
1138
+ " <th>3</th>\n",
1139
+ " <td>1949</td>\n",
1140
+ " <td>2999</td>\n",
1141
+ " </tr>\n",
1142
+ " <tr>\n",
1143
+ " <th>4</th>\n",
1144
+ " <td>1950</td>\n",
1145
+ " <td>2999</td>\n",
1146
+ " </tr>\n",
1147
+ " </tbody>\n",
1148
+ "</table>\n",
1149
+ "</div>"
1150
+ ],
1151
+ "text/plain": [
1152
+ " year attendees_est\n",
1153
+ "0 1946 2999\n",
1154
+ "1 1947 2999\n",
1155
+ "2 1948 3000\n",
1156
+ "3 1949 2999\n",
1157
+ "4 1950 2999"
1158
+ ]
1159
+ },
1160
+ "metadata": {},
1161
+ "output_type": "display_data"
1162
+ },
1163
+ {
1164
+ "name": "stdout",
1165
+ "output_type": "stream",
1166
+ "text": [
1167
+ "Saved table: ./tables\\events_attendance_by_year.csv\n",
1168
+ "Saved figure: ./figs\\10_events_attendance_by_year.png\n"
1169
+ ]
1170
+ }
1171
+ ],
1172
+ "source": [
1173
+ "events['year'] = pd.to_datetime(events['date']).dt.year\n",
1174
+ "att_year = events.groupby('year')[\"attendees_est\"].sum().reset_index()\n",
1175
+ "display(att_year.head())\n",
1176
+ "savetab(att_year, \"events_attendance_by_year.csv\")\n",
1177
+ "\n",
1178
+ "plt.figure(figsize=(8,4))\n",
1179
+ "plt.plot(att_year[\"year\"], att_year[\"attendees_est\"])\n",
1180
+ "plt.title(\"Street‑Band Festival — Total Attendance by Year\")\n",
1181
+ "plt.xlabel(\"Year\"); plt.ylabel(\"Estimated attendees\")\n",
1182
+ "savefig(\"10_events_attendance_by_year.png\")"
1183
+ ]
1184
+ },
1185
+ {
1186
+ "cell_type": "code",
1187
+ "execution_count": 20,
1188
+ "id": "f75741ef",
1189
+ "metadata": {},
1190
+ "outputs": [
1191
+ {
1192
+ "name": "stdout",
1193
+ "output_type": "stream",
1194
+ "text": [
1195
+ "Saved table: ./tables\\transit_ridership_by_year_pivot.csv\n",
1196
+ "Saved figure: ./figs\\11_transit_ridership_lines.png\n"
1197
+ ]
1198
+ }
1199
+ ],
1200
+ "source": [
1201
+ "ridership['year'] = pd.to_datetime(ridership['date']).dt.year\n",
1202
+ "rid_pvt = ridership.pivot_table(index=\"year\", columns=\"line_id\", values=\"boardings_est\", aggfunc=\"sum\")\n",
1203
+ "savetab(rid_pvt.reset_index(), \"transit_ridership_by_year_pivot.csv\")\n",
1204
+ "\n",
1205
+ "plt.figure(figsize=(9,5))\n",
1206
+ "for col in rid_pvt.columns:\n",
1207
+ " plt.plot(rid_pvt.index, rid_pvt[col])\n",
1208
+ "plt.title(\"Transit Ridership — Boardings by Line over Time\")\n",
1209
+ "plt.xlabel(\"Year\"); plt.ylabel(\"Boardings (est.)\")\n",
1210
+ "savefig(\"11_transit_ridership_lines.png\")"
1211
+ ]
1212
+ },
1213
+ {
1214
+ "cell_type": "code",
1215
+ "execution_count": 21,
1216
+ "id": "c857cfce",
1217
+ "metadata": {},
1218
+ "outputs": [
1219
+ {
1220
+ "name": "stdout",
1221
+ "output_type": "stream",
1222
+ "text": [
1223
+ "Saved figure: ./figs\\12_traffic_scatter.png\n"
1224
+ ]
1225
+ },
1226
+ {
1227
+ "data": {
1228
+ "text/html": [
1229
+ "<div>\n",
1230
+ "<style scoped>\n",
1231
+ " .dataframe tbody tr th:only-of-type {\n",
1232
+ " vertical-align: middle;\n",
1233
+ " }\n",
1234
+ "\n",
1235
+ " .dataframe tbody tr th {\n",
1236
+ " vertical-align: top;\n",
1237
+ " }\n",
1238
+ "\n",
1239
+ " .dataframe thead th {\n",
1240
+ " text-align: right;\n",
1241
+ " }\n",
1242
+ "</style>\n",
1243
+ "<table border=\"1\" class=\"dataframe\">\n",
1244
+ " <thead>\n",
1245
+ " <tr style=\"text-align: right;\">\n",
1246
+ " <th></th>\n",
1247
+ " <th>facility_type</th>\n",
1248
+ " <th>count</th>\n",
1249
+ " </tr>\n",
1250
+ " </thead>\n",
1251
+ " <tbody>\n",
1252
+ " <tr>\n",
1253
+ " <th>0</th>\n",
1254
+ " <td>painted_lane</td>\n",
1255
+ " <td>6</td>\n",
1256
+ " </tr>\n",
1257
+ " <tr>\n",
1258
+ " <th>1</th>\n",
1259
+ " <td>protected_lane</td>\n",
1260
+ " <td>2</td>\n",
1261
+ " </tr>\n",
1262
+ " <tr>\n",
1263
+ " <th>2</th>\n",
1264
+ " <td>shared</td>\n",
1265
+ " <td>1</td>\n",
1266
+ " </tr>\n",
1267
+ " </tbody>\n",
1268
+ "</table>\n",
1269
+ "</div>"
1270
+ ],
1271
+ "text/plain": [
1272
+ " facility_type count\n",
1273
+ "0 painted_lane 6\n",
1274
+ "1 protected_lane 2\n",
1275
+ "2 shared 1"
1276
+ ]
1277
+ },
1278
+ "metadata": {},
1279
+ "output_type": "display_data"
1280
+ },
1281
+ {
1282
+ "name": "stdout",
1283
+ "output_type": "stream",
1284
+ "text": [
1285
+ "Saved table: ./tables\\bike_facility_counts.csv\n",
1286
+ "Saved figure: ./figs\\13_bike_facility_bar.png\n"
1287
+ ]
1288
+ }
1289
+ ],
1290
+ "source": [
1291
+ "plt.figure(figsize=(6,5))\n",
1292
+ "plt.scatter(traffic[\"vehicles_per_day\"], traffic[\"bikes_per_day\"], alpha=0.5)\n",
1293
+ "plt.title(\"Traffic: Vehicles vs Bikes per Day\")\n",
1294
+ "plt.xlabel(\"Vehicles/day\"); plt.ylabel(\"Bikes/day\")\n",
1295
+ "savefig(\"12_traffic_scatter.png\")\n",
1296
+ "\n",
1297
+ "bike_counts = bike[\"facility_type\"].value_counts().reset_index()\n",
1298
+ "bike_counts.columns = [\"facility_type\",\"count\"]\n",
1299
+ "display(bike_counts)\n",
1300
+ "savetab(bike_counts, \"bike_facility_counts.csv\")\n",
1301
+ "\n",
1302
+ "plt.figure(figsize=(6,4))\n",
1303
+ "bike_counts.set_index(\"facility_type\")[\"count\"].plot(kind=\"bar\")\n",
1304
+ "plt.title(\"Bike Facility Types\")\n",
1305
+ "plt.xlabel(\"Facility type\"); plt.ylabel(\"Count\")\n",
1306
+ "savefig(\"13_bike_facility_bar.png\")"
1307
+ ]
1308
+ },
1309
+ {
1310
+ "cell_type": "code",
1311
+ "execution_count": 22,
1312
+ "id": "9a238c42",
1313
+ "metadata": {},
1314
+ "outputs": [
1315
+ {
1316
+ "name": "stdout",
1317
+ "output_type": "stream",
1318
+ "text": [
1319
+ "Saved table: ./tables\\weather_temp_monthly_mean.csv\n",
1320
+ "Saved figure: ./figs\\14_weather_temp_monthly.png\n",
1321
+ "Saved table: ./tables\\weather_rain_monthly_sum.csv\n",
1322
+ "Saved figure: ./figs\\15_weather_rain_monthly.png\n",
1323
+ "Saved table: ./tables\\weather_snow_monthly_sum.csv\n",
1324
+ "Saved figure: ./figs\\16_weather_snow_monthly.png\n"
1325
+ ]
1326
+ }
1327
+ ],
1328
+ "source": [
1329
+ "weather['month'] = pd.to_datetime(weather['date']).dt.month\n",
1330
+ "temp_month = weather.groupby('month')[\"temp_c\"].mean().reset_index()\n",
1331
+ "savetab(temp_month, \"weather_temp_monthly_mean.csv\")\n",
1332
+ "\n",
1333
+ "plt.figure(figsize=(7,4))\n",
1334
+ "plt.plot(temp_month[\"month\"], temp_month[\"temp_c\"], marker=\"o\")\n",
1335
+ "plt.title(\"Avg Temperature by Month\")\n",
1336
+ "plt.xlabel(\"Month\"); plt.ylabel(\"Temp (°C)\")\n",
1337
+ "savefig(\"14_weather_temp_monthly.png\")\n",
1338
+ "\n",
1339
+ "rain_month = weather.groupby('month')[\"precip_mm\"].sum().reset_index()\n",
1340
+ "savetab(rain_month, \"weather_rain_monthly_sum.csv\")\n",
1341
+ "\n",
1342
+ "plt.figure(figsize=(7,4))\n",
1343
+ "plt.bar(rain_month[\"month\"], rain_month[\"precip_mm\"])\n",
1344
+ "plt.title(\"Total Rainfall by Month\")\n",
1345
+ "plt.xlabel(\"Month\"); plt.ylabel(\"Precipitation (mm)\")\n",
1346
+ "savefig(\"15_weather_rain_monthly.png\")\n",
1347
+ "\n",
1348
+ "snow_month = weather.groupby('month')[\"snow_cm\"].sum().reset_index()\n",
1349
+ "savetab(snow_month, \"weather_snow_monthly_sum.csv\")\n",
1350
+ "\n",
1351
+ "plt.figure(figsize=(7,4))\n",
1352
+ "plt.bar(snow_month[\"month\"], snow_month[\"snow_cm\"])\n",
1353
+ "plt.title(\"Total Snowfall by Month\")\n",
1354
+ "plt.xlabel(\"Month\"); plt.ylabel(\"Snow (cm)\")\n",
1355
+ "savefig(\"16_weather_snow_monthly.png\")"
1356
+ ]
1357
+ },
1358
+ {
1359
+ "cell_type": "code",
1360
+ "execution_count": 23,
1361
+ "id": "d7b08fa7",
1362
+ "metadata": {},
1363
+ "outputs": [
1364
+ {
1365
+ "data": {
1366
+ "text/html": [
1367
+ "<div>\n",
1368
+ "<style scoped>\n",
1369
+ " .dataframe tbody tr th:only-of-type {\n",
1370
+ " vertical-align: middle;\n",
1371
+ " }\n",
1372
+ "\n",
1373
+ " .dataframe tbody tr th {\n",
1374
+ " vertical-align: top;\n",
1375
+ " }\n",
1376
+ "\n",
1377
+ " .dataframe thead th {\n",
1378
+ " text-align: right;\n",
1379
+ " }\n",
1380
+ "</style>\n",
1381
+ "<table border=\"1\" class=\"dataframe\">\n",
1382
+ " <thead>\n",
1383
+ " <tr style=\"text-align: right;\">\n",
1384
+ " <th></th>\n",
1385
+ " <th>type</th>\n",
1386
+ " <th>count</th>\n",
1387
+ " </tr>\n",
1388
+ " </thead>\n",
1389
+ " <tbody>\n",
1390
+ " <tr>\n",
1391
+ " <th>3</th>\n",
1392
+ " <td>water_main_break</td>\n",
1393
+ " <td>89</td>\n",
1394
+ " </tr>\n",
1395
+ " <tr>\n",
1396
+ " <th>0</th>\n",
1397
+ " <td>power_outage</td>\n",
1398
+ " <td>86</td>\n",
1399
+ " </tr>\n",
1400
+ " <tr>\n",
1401
+ " <th>1</th>\n",
1402
+ " <td>road_potholes</td>\n",
1403
+ " <td>54</td>\n",
1404
+ " </tr>\n",
1405
+ " <tr>\n",
1406
+ " <th>2</th>\n",
1407
+ " <td>tree_fall</td>\n",
1408
+ " <td>24</td>\n",
1409
+ " </tr>\n",
1410
+ " </tbody>\n",
1411
+ "</table>\n",
1412
+ "</div>"
1413
+ ],
1414
+ "text/plain": [
1415
+ " type count\n",
1416
+ "3 water_main_break 89\n",
1417
+ "0 power_outage 86\n",
1418
+ "1 road_potholes 54\n",
1419
+ "2 tree_fall 24"
1420
+ ]
1421
+ },
1422
+ "metadata": {},
1423
+ "output_type": "display_data"
1424
+ },
1425
+ {
1426
+ "name": "stdout",
1427
+ "output_type": "stream",
1428
+ "text": [
1429
+ "Saved table: ./tables\\infra_event_counts.csv\n",
1430
+ "Saved figure: ./figs\\17_infra_events_bar.png\n"
1431
+ ]
1432
+ },
1433
+ {
1434
+ "data": {
1435
+ "text/html": [
1436
+ "<div>\n",
1437
+ "<style scoped>\n",
1438
+ " .dataframe tbody tr th:only-of-type {\n",
1439
+ " vertical-align: middle;\n",
1440
+ " }\n",
1441
+ "\n",
1442
+ " .dataframe tbody tr th {\n",
1443
+ " vertical-align: top;\n",
1444
+ " }\n",
1445
+ "\n",
1446
+ " .dataframe thead th {\n",
1447
+ " text-align: right;\n",
1448
+ " }\n",
1449
+ "</style>\n",
1450
+ "<table border=\"1\" class=\"dataframe\">\n",
1451
+ " <thead>\n",
1452
+ " <tr style=\"text-align: right;\">\n",
1453
+ " <th></th>\n",
1454
+ " <th>type</th>\n",
1455
+ " <th>count</th>\n",
1456
+ " </tr>\n",
1457
+ " </thead>\n",
1458
+ " <tbody>\n",
1459
+ " <tr>\n",
1460
+ " <th>0</th>\n",
1461
+ " <td>hvac_failure</td>\n",
1462
+ " <td>676</td>\n",
1463
+ " </tr>\n",
1464
+ " <tr>\n",
1465
+ " <th>2</th>\n",
1466
+ " <td>roof_leak</td>\n",
1467
+ " <td>662</td>\n",
1468
+ " </tr>\n",
1469
+ " <tr>\n",
1470
+ " <th>1</th>\n",
1471
+ " <td>plumbing_issue</td>\n",
1472
+ " <td>276</td>\n",
1473
+ " </tr>\n",
1474
+ " </tbody>\n",
1475
+ "</table>\n",
1476
+ "</div>"
1477
+ ],
1478
+ "text/plain": [
1479
+ " type count\n",
1480
+ "0 hvac_failure 676\n",
1481
+ "2 roof_leak 662\n",
1482
+ "1 plumbing_issue 276"
1483
+ ]
1484
+ },
1485
+ "metadata": {},
1486
+ "output_type": "display_data"
1487
+ },
1488
+ {
1489
+ "name": "stdout",
1490
+ "output_type": "stream",
1491
+ "text": [
1492
+ "Saved table: ./tables\\building_issue_counts.csv\n",
1493
+ "Saved figure: ./figs\\18_building_issues_bar.png\n"
1494
+ ]
1495
+ }
1496
+ ],
1497
+ "source": [
1498
+ "infra['year'] = pd.to_datetime(infra['date']).dt.year\n",
1499
+ "infra_counts = infra.groupby(['type'])[\"infra_event_id\"].count().reset_index(name=\"count\").sort_values(\"count\", ascending=False)\n",
1500
+ "display(infra_counts)\n",
1501
+ "savetab(infra_counts, \"infra_event_counts.csv\")\n",
1502
+ "\n",
1503
+ "plt.figure(figsize=(7,4))\n",
1504
+ "infra_counts.set_index(\"type\")[\"count\"].plot(kind=\"bar\")\n",
1505
+ "plt.title(\"Infrastructure Events by Type\")\n",
1506
+ "plt.xlabel(\"Type\"); plt.ylabel(\"Count\")\n",
1507
+ "savefig(\"17_infra_events_bar.png\")\n",
1508
+ "\n",
1509
+ "bissues['year'] = pd.to_datetime(bissues['date']).dt.year\n",
1510
+ "bissues_counts = bissues.groupby(['type'])[\"building_issue_id\"].count().reset_index(name=\"count\").sort_values(\"count\", ascending=False)\n",
1511
+ "display(bissues_counts)\n",
1512
+ "savetab(bissues_counts, \"building_issue_counts.csv\")\n",
1513
+ "\n",
1514
+ "plt.figure(figsize=(7,4))\n",
1515
+ "bissues_counts.set_index(\"type\")[\"count\"].plot(kind=\"bar\")\n",
1516
+ "plt.title(\"Building Issues by Type\")\n",
1517
+ "plt.xlabel(\"Type\"); plt.ylabel(\"Count\")\n",
1518
+ "savefig(\"18_building_issues_bar.png\")"
1519
+ ]
1520
+ },
1521
+ {
1522
+ "cell_type": "code",
1523
+ "execution_count": 24,
1524
+ "id": "8e57aa50",
1525
+ "metadata": {},
1526
+ "outputs": [
1527
+ {
1528
+ "name": "stdout",
1529
+ "output_type": "stream",
1530
+ "text": [
1531
+ "Saved figure: ./figs\\19_prices_housing_line.png\n",
1532
+ "Saved figure: ./figs\\20_prices_food_line.png\n",
1533
+ "Saved figure: ./figs\\21_prices_transit_line.png\n"
1534
+ ]
1535
+ }
1536
+ ],
1537
+ "source": [
1538
+ "plt.figure(figsize=(8,4))\n",
1539
+ "plt.plot(prices[\"year\"], prices[\"housing_idx\"])\n",
1540
+ "plt.title(\"Housing Price Index (Synthetic)\")\n",
1541
+ "plt.xlabel(\"Year\"); plt.ylabel(\"Index\")\n",
1542
+ "savefig(\"19_prices_housing_line.png\")\n",
1543
+ "\n",
1544
+ "plt.figure(figsize=(8,4))\n",
1545
+ "plt.plot(prices[\"year\"], prices[\"staple_food_idx\"])\n",
1546
+ "plt.title(\"Staple Food Index (Synthetic)\")\n",
1547
+ "plt.xlabel(\"Year\"); plt.ylabel(\"Index\")\n",
1548
+ "savefig(\"20_prices_food_line.png\")\n",
1549
+ "\n",
1550
+ "plt.figure(figsize=(8,4))\n",
1551
+ "plt.plot(prices[\"year\"], prices[\"transit_fare_idx\"])\n",
1552
+ "plt.title(\"Transit Fare Index (Synthetic)\")\n",
1553
+ "plt.xlabel(\"Year\"); plt.ylabel(\"Index\")\n",
1554
+ "savefig(\"21_prices_transit_line.png\")"
1555
+ ]
1556
+ },
1557
+ {
1558
+ "cell_type": "markdown",
1559
+ "id": "765e0518",
1560
+ "metadata": {},
1561
+ "source": [
1562
+ "### Outputs\n",
1563
+ "- Figures saved under `FIGS_DIR`\n",
1564
+ "- Summary tables saved under `TABLES_DIR`\n",
1565
+ "\n",
1566
+ "You can zip these folders or publish selected images wherever you like.\n"
1567
+ ]
1568
+ }
1569
+ ],
1570
+ "metadata": {
1571
+ "kernelspec": {
1572
+ "display_name": "Python 3 (ipykernel)",
1573
+ "language": "python",
1574
+ "name": "python3"
1575
+ },
1576
+ "language_info": {
1577
+ "codemirror_mode": {
1578
+ "name": "ipython",
1579
+ "version": 3
1580
+ },
1581
+ "file_extension": ".py",
1582
+ "mimetype": "text/x-python",
1583
+ "name": "python",
1584
+ "nbconvert_exporter": "python",
1585
+ "pygments_lexer": "ipython3",
1586
+ "version": "3.12.7"
1587
+ }
1588
+ },
1589
+ "nbformat": 4,
1590
+ "nbformat_minor": 5
1591
+ }