Upload DBbun_Davis_ML_demo.ipynb
Browse files- DBbun_Davis_ML_demo.ipynb +8 -36
DBbun_Davis_ML_demo.ipynb
CHANGED
|
@@ -74,7 +74,7 @@
|
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"cell_type": "code",
|
| 77 |
-
"execution_count":
|
| 78 |
"id": "0fd4f78b-44e7-424d-8f1c-3bbc29468cba",
|
| 79 |
"metadata": {},
|
| 80 |
"outputs": [],
|
|
@@ -85,7 +85,7 @@
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
"cell_type": "code",
|
| 88 |
-
"execution_count":
|
| 89 |
"id": "2a2efd9d-75b0-43f4-894b-f7347e3febdb",
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [],
|
|
@@ -95,7 +95,7 @@
|
|
| 95 |
},
|
| 96 |
{
|
| 97 |
"cell_type": "code",
|
| 98 |
-
"execution_count":
|
| 99 |
"id": "0ac6980b",
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [
|
|
@@ -153,7 +153,7 @@
|
|
| 153 |
},
|
| 154 |
{
|
| 155 |
"cell_type": "code",
|
| 156 |
-
"execution_count":
|
| 157 |
"id": "2a457810",
|
| 158 |
"metadata": {},
|
| 159 |
"outputs": [],
|
|
@@ -198,7 +198,7 @@
|
|
| 198 |
},
|
| 199 |
{
|
| 200 |
"cell_type": "code",
|
| 201 |
-
"execution_count":
|
| 202 |
"id": "0a9bb0f2",
|
| 203 |
"metadata": {},
|
| 204 |
"outputs": [
|
|
@@ -308,7 +308,7 @@
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"cell_type": "code",
|
| 311 |
-
"execution_count":
|
| 312 |
"id": "bb03cb92",
|
| 313 |
"metadata": {},
|
| 314 |
"outputs": [
|
|
@@ -395,30 +395,10 @@
|
|
| 395 |
},
|
| 396 |
{
|
| 397 |
"cell_type": "code",
|
| 398 |
-
"execution_count":
|
| 399 |
"id": "8b77b4d6",
|
| 400 |
"metadata": {},
|
| 401 |
"outputs": [
|
| 402 |
-
{
|
| 403 |
-
"name": "stderr",
|
| 404 |
-
"output_type": "stream",
|
| 405 |
-
"text": [
|
| 406 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 407 |
-
" warnings.warn(\n",
|
| 408 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 409 |
-
" warnings.warn(\n",
|
| 410 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 411 |
-
" warnings.warn(\n",
|
| 412 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 413 |
-
" warnings.warn(\n",
|
| 414 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 415 |
-
" warnings.warn(\n",
|
| 416 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 417 |
-
" warnings.warn(\n",
|
| 418 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 419 |
-
" warnings.warn(\n"
|
| 420 |
-
]
|
| 421 |
-
},
|
| 422 |
{
|
| 423 |
"name": "stdout",
|
| 424 |
"output_type": "stream",
|
|
@@ -427,14 +407,6 @@
|
|
| 427 |
"Saved table: ./ml_tables\\cluster_sizes.csv\n"
|
| 428 |
]
|
| 429 |
},
|
| 430 |
-
{
|
| 431 |
-
"name": "stderr",
|
| 432 |
-
"output_type": "stream",
|
| 433 |
-
"text": [
|
| 434 |
-
"C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
| 435 |
-
" warnings.warn(\n"
|
| 436 |
-
]
|
| 437 |
-
},
|
| 438 |
{
|
| 439 |
"data": {
|
| 440 |
"text/html": [
|
|
@@ -559,7 +531,7 @@
|
|
| 559 |
},
|
| 560 |
{
|
| 561 |
"cell_type": "code",
|
| 562 |
-
"execution_count":
|
| 563 |
"id": "73f43632",
|
| 564 |
"metadata": {},
|
| 565 |
"outputs": [
|
|
|
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"cell_type": "code",
|
| 77 |
+
"execution_count": 2,
|
| 78 |
"id": "0fd4f78b-44e7-424d-8f1c-3bbc29468cba",
|
| 79 |
"metadata": {},
|
| 80 |
"outputs": [],
|
|
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
"cell_type": "code",
|
| 88 |
+
"execution_count": 3,
|
| 89 |
"id": "2a2efd9d-75b0-43f4-894b-f7347e3febdb",
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [],
|
|
|
|
| 95 |
},
|
| 96 |
{
|
| 97 |
"cell_type": "code",
|
| 98 |
+
"execution_count": 4,
|
| 99 |
"id": "0ac6980b",
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [
|
|
|
|
| 153 |
},
|
| 154 |
{
|
| 155 |
"cell_type": "code",
|
| 156 |
+
"execution_count": 5,
|
| 157 |
"id": "2a457810",
|
| 158 |
"metadata": {},
|
| 159 |
"outputs": [],
|
|
|
|
| 198 |
},
|
| 199 |
{
|
| 200 |
"cell_type": "code",
|
| 201 |
+
"execution_count": 6,
|
| 202 |
"id": "0a9bb0f2",
|
| 203 |
"metadata": {},
|
| 204 |
"outputs": [
|
|
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"cell_type": "code",
|
| 311 |
+
"execution_count": 7,
|
| 312 |
"id": "bb03cb92",
|
| 313 |
"metadata": {},
|
| 314 |
"outputs": [
|
|
|
|
| 395 |
},
|
| 396 |
{
|
| 397 |
"cell_type": "code",
|
| 398 |
+
"execution_count": 8,
|
| 399 |
"id": "8b77b4d6",
|
| 400 |
"metadata": {},
|
| 401 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
{
|
| 403 |
"name": "stdout",
|
| 404 |
"output_type": "stream",
|
|
|
|
| 407 |
"Saved table: ./ml_tables\\cluster_sizes.csv\n"
|
| 408 |
]
|
| 409 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
{
|
| 411 |
"data": {
|
| 412 |
"text/html": [
|
|
|
|
| 531 |
},
|
| 532 |
{
|
| 533 |
"cell_type": "code",
|
| 534 |
+
"execution_count": 9,
|
| 535 |
"id": "73f43632",
|
| 536 |
"metadata": {},
|
| 537 |
"outputs": [
|