kartoun commited on
Commit
2a3e311
·
verified ·
1 Parent(s): 66daceb

Upload DBbun_Davis_ML_demo.ipynb

Browse files
Files changed (1) hide show
  1. DBbun_Davis_ML_demo.ipynb +8 -36
DBbun_Davis_ML_demo.ipynb CHANGED
@@ -74,7 +74,7 @@
74
  },
75
  {
76
  "cell_type": "code",
77
- "execution_count": 3,
78
  "id": "0fd4f78b-44e7-424d-8f1c-3bbc29468cba",
79
  "metadata": {},
80
  "outputs": [],
@@ -85,7 +85,7 @@
85
  },
86
  {
87
  "cell_type": "code",
88
- "execution_count": 4,
89
  "id": "2a2efd9d-75b0-43f4-894b-f7347e3febdb",
90
  "metadata": {},
91
  "outputs": [],
@@ -95,7 +95,7 @@
95
  },
96
  {
97
  "cell_type": "code",
98
- "execution_count": 5,
99
  "id": "0ac6980b",
100
  "metadata": {},
101
  "outputs": [
@@ -153,7 +153,7 @@
153
  },
154
  {
155
  "cell_type": "code",
156
- "execution_count": 6,
157
  "id": "2a457810",
158
  "metadata": {},
159
  "outputs": [],
@@ -198,7 +198,7 @@
198
  },
199
  {
200
  "cell_type": "code",
201
- "execution_count": 7,
202
  "id": "0a9bb0f2",
203
  "metadata": {},
204
  "outputs": [
@@ -308,7 +308,7 @@
308
  },
309
  {
310
  "cell_type": "code",
311
- "execution_count": 8,
312
  "id": "bb03cb92",
313
  "metadata": {},
314
  "outputs": [
@@ -395,30 +395,10 @@
395
  },
396
  {
397
  "cell_type": "code",
398
- "execution_count": 9,
399
  "id": "8b77b4d6",
400
  "metadata": {},
401
  "outputs": [
402
- {
403
- "name": "stderr",
404
- "output_type": "stream",
405
- "text": [
406
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
407
- " warnings.warn(\n",
408
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
409
- " warnings.warn(\n",
410
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
411
- " warnings.warn(\n",
412
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
413
- " warnings.warn(\n",
414
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
415
- " warnings.warn(\n",
416
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
417
- " warnings.warn(\n",
418
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
419
- " warnings.warn(\n"
420
- ]
421
- },
422
  {
423
  "name": "stdout",
424
  "output_type": "stream",
@@ -427,14 +407,6 @@
427
  "Saved table: ./ml_tables\\cluster_sizes.csv\n"
428
  ]
429
  },
430
- {
431
- "name": "stderr",
432
- "output_type": "stream",
433
- "text": [
434
- "C:\\Users\\karto\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
435
- " warnings.warn(\n"
436
- ]
437
- },
438
  {
439
  "data": {
440
  "text/html": [
@@ -559,7 +531,7 @@
559
  },
560
  {
561
  "cell_type": "code",
562
- "execution_count": 10,
563
  "id": "73f43632",
564
  "metadata": {},
565
  "outputs": [
 
74
  },
75
  {
76
  "cell_type": "code",
77
+ "execution_count": 2,
78
  "id": "0fd4f78b-44e7-424d-8f1c-3bbc29468cba",
79
  "metadata": {},
80
  "outputs": [],
 
85
  },
86
  {
87
  "cell_type": "code",
88
+ "execution_count": 3,
89
  "id": "2a2efd9d-75b0-43f4-894b-f7347e3febdb",
90
  "metadata": {},
91
  "outputs": [],
 
95
  },
96
  {
97
  "cell_type": "code",
98
+ "execution_count": 4,
99
  "id": "0ac6980b",
100
  "metadata": {},
101
  "outputs": [
 
153
  },
154
  {
155
  "cell_type": "code",
156
+ "execution_count": 5,
157
  "id": "2a457810",
158
  "metadata": {},
159
  "outputs": [],
 
198
  },
199
  {
200
  "cell_type": "code",
201
+ "execution_count": 6,
202
  "id": "0a9bb0f2",
203
  "metadata": {},
204
  "outputs": [
 
308
  },
309
  {
310
  "cell_type": "code",
311
+ "execution_count": 7,
312
  "id": "bb03cb92",
313
  "metadata": {},
314
  "outputs": [
 
395
  },
396
  {
397
  "cell_type": "code",
398
+ "execution_count": 8,
399
  "id": "8b77b4d6",
400
  "metadata": {},
401
  "outputs": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
  {
403
  "name": "stdout",
404
  "output_type": "stream",
 
407
  "Saved table: ./ml_tables\\cluster_sizes.csv\n"
408
  ]
409
  },
 
 
 
 
 
 
 
 
410
  {
411
  "data": {
412
  "text/html": [
 
531
  },
532
  {
533
  "cell_type": "code",
534
+ "execution_count": 9,
535
  "id": "73f43632",
536
  "metadata": {},
537
  "outputs": [