File size: 4,771 Bytes
f7c8e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
license: cc-by-4.0
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- tr
tags:
- speech
- audio
- dataset
- tts
- asr
- merged-dataset
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: train
    path: "train-*.parquet"
  default: true
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: null
  - name: text
    dtype: string
  - name: speaker_id
    dtype: string
  - name: language
    dtype: string
  - name: emotion
    dtype: string
  - name: original_dataset
    dtype: string
  - name: original_filename
    dtype: string
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: duration
    dtype: float32
  splits:
  - name: train
    num_examples: 1293
  config_name: default
---

# FTTRTEST

This is a merged speech dataset containing 1293 audio segments from 5 source datasets.

## Dataset Information

- **Total Segments**: 1293
- **Speakers**: 7
- **Languages**: tr
- **Emotions**: happy, angry, neutral
- **Original Datasets**: 5

## Dataset Structure

Each example contains:
- `audio`: Audio file (WAV format, original sampling rate preserved)
- `text`: Transcription of the audio
- `speaker_id`: Unique speaker identifier (made unique across all merged datasets)
- `language`: Language code (en, es, fr, etc.)
- `emotion`: Detected emotion (neutral, happy, sad, etc.)
- `original_dataset`: Name of the source dataset this segment came from
- `original_filename`: Original filename in the source dataset
- `start_time`: Start time of the segment in seconds
- `end_time`: End time of the segment in seconds
- `duration`: Duration of the segment in seconds

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Codyfederer/fttrtest")

# Access the training split
train_data = dataset["train"]

# Example: Get first sample
sample = train_data[0]
print(f"Text: {sample['text']}")
print(f"Speaker: {sample['speaker_id']}")
print(f"Language: {sample['language']}")
print(f"Emotion: {sample['emotion']}")
print(f"Original Dataset: {sample['original_dataset']}")
print(f"Duration: {sample['duration']}s")

# Play audio (requires audio libraries)
# sample['audio']['array'] contains the audio data
# sample['audio']['sampling_rate'] contains the sampling rate
```

### Alternative: Load from JSONL

```python
from datasets import Dataset, Audio, Features, Value
import json

# Load the JSONL file
rows = []
with open("data.jsonl", "r", encoding="utf-8") as f:
    for line in f:
        rows.append(json.loads(line))

features = Features({
    "audio": Audio(sampling_rate=None),
    "text": Value("string"),
    "speaker_id": Value("string"),
    "language": Value("string"),
    "emotion": Value("string"),
    "original_dataset": Value("string"),
    "original_filename": Value("string"),
    "start_time": Value("float32"),
    "end_time": Value("float32"),
    "duration": Value("float32")
})

dataset = Dataset.from_list(rows, features=features)
```

### Dataset Structure

The dataset includes:
- `data.jsonl` - Main dataset file with all columns (JSON Lines)
- `*.wav` - Audio files under `audio_XXX/` subdirectories  
- `load_dataset.txt` - Python script for loading the dataset (rename to .py to use)

JSONL keys:
- `audio`: Relative audio path (e.g., `audio_000/segment_000000_speaker_0.wav`)
- `text`: Transcription of the audio
- `speaker_id`: Unique speaker identifier
- `language`: Language code
- `emotion`: Detected emotion
- `original_dataset`: Name of the source dataset
- `original_filename`: Original filename in the source dataset
- `start_time`: Start time of the segment in seconds
- `end_time`: End time of the segment in seconds
- `duration`: Duration of the segment in seconds

## Speaker ID Mapping

Speaker IDs have been made unique across all merged datasets to avoid conflicts.
For example:
- Original Dataset A: `speaker_0`, `speaker_1`
- Original Dataset B: `speaker_0`, `speaker_1`
- Merged Dataset: `speaker_0`, `speaker_1`, `speaker_2`, `speaker_3`

Original dataset information is preserved in the metadata for reference.

## Data Quality

This dataset was created using the Vyvo Dataset Builder with:
- Automatic transcription and diarization
- Quality filtering for audio segments
- Music and noise filtering
- Emotion detection
- Language identification

## License

This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

## Citation

```bibtex
@dataset{vyvo_merged_dataset,
  title={FTTRTEST},
  author={Vyvo Dataset Builder},
  year={2025},
  url={https://huggingface.co/datasets/Codyfederer/fttrtest}
}
```

This dataset was created using the Vyvo Dataset Builder tool.