--- license: mit task_categories: - tabular-classification language: - en tags: - education - data-centric-ai - label-noise - cleanlab pretty_name: Student Grades Dataset size_categories: - n<1K --- # Student Grades Dataset ## Dataset Description This dataset contains student grade data used in the cleanlab tutorial: [Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html). The task is to predict each student's final letter grade (A, B, C, D, F) based on their exam scores and notes. ### Dataset Summary - **Total Examples**: ~750 (train + test) - **Task**: Multi-class classification - **Features**: - `exam_1`: Score on first exam (0-100) - `exam_2`: Score on second exam (0-100) - `exam_3`: Score on third exam (0-100) - `notes`: Categorical notes about student (e.g., "great participation +10", "cheated on exam, gets 0pts") - `stud_ID`: Unique student identifier - **Label**: `noisy_letter_grade` - Letter grade (A, B, C, D, F) ### Dataset Structure ```python from datasets import load_dataset dataset = load_dataset("cleanlab/student-grades") # Access splits train_data = dataset["train"] test_data = dataset["test"] # Convert to pandas import pandas as pd df_train = train_data.to_pandas() df_test = test_data.to_pandas() ``` ### Data Splits | Split | Examples | |-------|----------| | train | ~600 | | test | ~130 | ### Dataset Fields - **stud_ID** (string): Unique student identifier - **exam_1** (float): First exam score (0-100) - **exam_2** (float): Second exam score (0-100) - **exam_3** (float): Third exam score (0-100) - **notes** (string): Categorical notes about the student - **noisy_letter_grade** (string): Final letter grade (A, B, C, D, F) - may contain label errors ## Dataset Creation This dataset was created for educational purposes to demonstrate data-centric AI techniques using cleanlab. The data intentionally contains: - **Label noise**: Some grades may be incorrectly labeled - **Near duplicates**: Some examples are very similar or exact duplicates - **Outliers**: Unusual data points that don't fit the distribution These issues are introduced to help users learn how to detect and handle common data quality problems using cleanlab. ## Uses ### Primary Use Case This dataset is designed for: 1. Learning data-centric AI techniques 2. Demonstrating cleanlab's capabilities for detecting label errors, outliers, and near duplicates 3. Teaching proper train/test data curation workflows ### Example Usage ```python from datasets import load_dataset from cleanlab import Datalab # Load dataset dataset = load_dataset("cleanlab/student-grades") df_train = dataset["train"].to_pandas() # Use cleanlab to detect issues lab = Datalab(data=df_train, label_name="noisy_letter_grade", task="classification") lab.find_issues() lab.report() ``` ## Tutorial For a complete tutorial using this dataset, see: [Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html) ## Licensing Information MIT License ## Citation If you use this dataset in your research, please cite the cleanlab library: ```bibtex @software{cleanlab, author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas}, title = {cleanlab}, year = {2021}, url = {https://github.com/cleanlab/cleanlab}, } ``` ## Contact - **Maintainers**: Cleanlab Team - **Repository**: https://github.com/cleanlab/cleanlab - **Documentation**: https://docs.cleanlab.ai - **Issues**: https://github.com/cleanlab/cleanlab/issues