""" Preprocess GDP data for economic analysis. This script downloads and processes GDP data from: 1. IMF API for country-level GDP data 2. BEA (Bureau of Economic Analysis) for US state-level GDP data Output files: - gdp_YYYY_country.csv (e.g., gdp_2024_country.csv): Country-level total GDP - gdp_YYYY_us_state.csv (e.g., gdp_2024_us_state.csv): US state-level total GDP """ import io import json import warnings from pathlib import Path import httpx import pandas as pd # Global configuration YEAR = 2024 DATA_INPUT_DIR = Path("../data/input") DATA_INTERMEDIATE_DIR = Path("../data/intermediate") # Countries where Claude AI service is not available # These will be excluded from all GDP data EXCLUDED_COUNTRIES = [ "AFG", "BLR", "COD", "CAF", "CHN", "CUB", "ERI", "ETH", "HKG", "IRN", "PRK", "LBY", "MLI", "MMR", "MAC", "NIC", "RUS", "SDN", "SOM", "SSD", "SYR", "VEN", "YEM", ] def check_existing_files(): """Check if processed GDP files already exist.""" gdp_country_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv" gdp_state_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv" if gdp_country_path.exists() and gdp_state_path.exists(): print("✅ GDP files already exist:") print(f" - {gdp_country_path}") print(f" - {gdp_state_path}") print("Skipping GDP preprocessing. Delete these files if you want to re-run.") return True return False def load_country_gdp_data(): """ Load country-level GDP data from cache or IMF API. Returns: dict: Raw GDP data from IMF API, or None if fetch fails """ # Check if raw data already exists raw_gdp_path = DATA_INPUT_DIR / f"imf_gdp_raw_{YEAR}.json" if raw_gdp_path.exists(): print("Loading cached IMF GDP data...") with open(raw_gdp_path) as f: return json.load(f) # Download if not cached imf_total_gdp_url = "https://www.imf.org/external/datamapper/api/v1/NGDPD" # IMF returns GDP in billions USD print("Fetching GDP data from IMF API...") try: with httpx.Client() as client: response = client.get(imf_total_gdp_url, timeout=30) response.raise_for_status() gdp_data = response.json() print("✓ Successfully fetched total GDP data from IMF API") # Save raw data for future use with open(raw_gdp_path, "w") as f: json.dump(gdp_data, f, indent=2) print(f"✓ Saved raw GDP data to {raw_gdp_path}") return gdp_data except Exception as e: raise ConnectionError(f"Failed to fetch data from IMF API: {e}") from e def process_country_gdp_data(gdp_data): """ Process IMF GDP data into standardized format. Args: gdp_data: Raw IMF API response Returns: pd.DataFrame: Processed country GDP data (excluding countries where service is not available) """ # Extract GDP data for target year # Structure: {"values": {"NGDPD": {"countryiso3code": {"year": value}}}} gdp_values = gdp_data.get("values", {}).get("NGDPD", {}) # Build records for target year data only gdp_records = [] target_year = str(YEAR) missing_countries = [] for countryiso3code, years_data in gdp_values.items(): if isinstance(years_data, dict): if target_year in years_data and years_data[target_year]: gdp_value = years_data[target_year] # Convert from billions to actual dollars gdp_records.append( { "iso_alpha_3": countryiso3code, "gdp_total": float(gdp_value) * 1e9, # Convert billions to dollars "year": YEAR, } ) else: missing_countries.append(countryiso3code) if missing_countries: warnings.warn( f"{len(missing_countries)} countries missing {YEAR} GDP data. " f"Examples: {missing_countries[:5]}", UserWarning, stacklevel=2, ) df_gdp = pd.DataFrame(gdp_records) if df_gdp.empty: raise ValueError(f"No GDP data available for year {YEAR}") # Apply country code mappings for mismatches between IMF and ISO3 country_code_mappings = { "UVK": "XKX", # Kosovo # Add more mappings as needed } for imf_code, iso3_code in country_code_mappings.items(): df_gdp.loc[df_gdp["iso_alpha_3"] == imf_code, "iso_alpha_3"] = iso3_code # Filter to only keep countries with valid ISO-3 codes # This removes regional aggregates like ADVEC, AFQ, etc. iso_codes_path = DATA_INTERMEDIATE_DIR / "iso_country_codes.csv" df_iso = pd.read_csv(iso_codes_path, keep_default_na=False, na_values=[""]) valid_iso3_codes = set(df_iso["iso_alpha_3"].unique()) initial_aggregate_count = len(df_gdp) df_gdp = df_gdp[df_gdp["iso_alpha_3"].isin(valid_iso3_codes)] filtered_aggregates = initial_aggregate_count - len(df_gdp) if filtered_aggregates > 0: print( f" Filtered out {filtered_aggregates} non-country codes (regional aggregates)" ) # Filter out excluded countries (now using 3-letter codes directly) initial_count = len(df_gdp) df_gdp = df_gdp[~df_gdp["iso_alpha_3"].isin(EXCLUDED_COUNTRIES)] excluded_count = initial_count - len(df_gdp) if excluded_count > 0: print(f" Excluded {excluded_count} countries where service is not available") # Save processed GDP data processed_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv" df_gdp.to_csv(processed_gdp_path, index=False) print(f"✓ Saved processed GDP data to {processed_gdp_path}") print(f" Countries with {YEAR} GDP data: {len(df_gdp)}") print(f" Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}") print(f" Total global GDP: ${df_gdp['gdp_total'].sum() / 1e12:.2f} trillion") return df_gdp def load_state_gdp_data(): """ Load US state GDP data from BEA file. Returns: pd.DataFrame: Raw state GDP data, or None if file not found """ state_gdp_raw_path = DATA_INPUT_DIR / f"bea_us_state_gdp_{YEAR}.csv" if not state_gdp_raw_path.exists(): error_msg = f""" State GDP data not found at: {state_gdp_raw_path} To obtain this data: 1. Go to: https://apps.bea.gov/itable/?ReqID=70&step=1 2. Select: SASUMMARY State annual summary statistics (area = "United States", statistic = Gross domestic product (GDP), unit of measure = "Levels") 3. Download the CSV file for year {YEAR} 4. Save it as: bea_us_state_gdp_{YEAR}.csv 5. Place it in your data input directory """ raise FileNotFoundError(error_msg) print("Loading US state GDP data...") # Parse CSV skipping the first 3 rows (BEA metadata) df_state_gdp_raw = pd.read_csv(state_gdp_raw_path, skiprows=3) df_state_gdp_raw.columns = ["GeoFips", "State", f"gdp_{YEAR}_millions"] return df_state_gdp_raw def process_state_gdp_data(df_state_gdp_raw): """ Process BEA state GDP data into standardized format. Args: df_state_gdp_raw: Raw BEA data Returns: pd.DataFrame: Processed state GDP data """ # Remove the US total row (GeoFips = "00000") df_state_gdp = df_state_gdp_raw[df_state_gdp_raw["GeoFips"] != "00000"].copy() # Remove all rows starting from empty line before "Legend/Footnotes" marker # BEA files have footer information after the data, with an empty line before legend_index = ( df_state_gdp[ df_state_gdp["GeoFips"].str.contains("Legend", case=False, na=False) ].index[0] - 1 ) df_state_gdp = df_state_gdp.iloc[:legend_index].copy() print(f" Removed footer rows starting from 'Legend/Footnotes'") # Convert GDP from millions to actual dollars df_state_gdp["gdp_total"] = df_state_gdp[f"gdp_{YEAR}_millions"] * 1e6 # Clean state names df_state_gdp["State"] = df_state_gdp["State"].str.strip() # Get state codes state_code_dict = get_state_codes() df_state_gdp["state_code"] = df_state_gdp["State"].map(state_code_dict) # Check for missing state codes missing_codes = df_state_gdp[df_state_gdp["state_code"].isna()] if not missing_codes.empty: raise ValueError( f"Could not find state codes for: {missing_codes['State'].tolist()}\n" f"All BEA state names should match Census state codes after filtering." ) # Select and rename columns df_state_gdp_final = df_state_gdp[ ["state_code", "State", "gdp_total", f"gdp_{YEAR}_millions"] ].copy() df_state_gdp_final.columns = [ "state_code", "state_name", "gdp_total", "gdp_millions", ] df_state_gdp_final["year"] = YEAR # Save processed state GDP data processed_state_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv" df_state_gdp_final.to_csv(processed_state_gdp_path, index=False) print( f"✓ Processed state GDP data for {len(df_state_gdp_final)} states/territories" ) print( f" Total US GDP: ${df_state_gdp_final['gdp_total'].sum() / 1e12:.2f} trillion" ) print(f"✓ Saved to {processed_state_gdp_path}") return df_state_gdp_final def get_state_codes(): """ Get US state codes from Census Bureau. Returns: dict: Mapping of state names to abbreviations """ state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt" if state_codes_path.exists(): print(" Loading cached state codes...") df_state_codes = pd.read_csv(state_codes_path, sep="|") else: print(" Downloading state codes from Census Bureau...") response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt") response.raise_for_status() # Save for future use with open(state_codes_path, "w") as f: f.write(response.text) print(f" Cached state codes to {state_codes_path}") df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|") # Create mapping dictionary state_code_dict = dict( zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True) ) return state_code_dict def main(): """Main function to run GDP preprocessing.""" # Check if files already exist if check_existing_files(): return print("=" * 60) print(f"PROCESSING {YEAR} GDP DATA") print("=" * 60) # Process country-level GDP from IMF print(f"\n=== Country-Level GDP (IMF) - Year {YEAR} ===") gdp_data = load_country_gdp_data() df_gdp_country = process_country_gdp_data(gdp_data) # Process US state-level GDP from BEA print(f"\n=== US State-Level GDP (BEA) - Year {YEAR} ===") df_state_gdp_raw = load_state_gdp_data() df_gdp_state = process_state_gdp_data(df_state_gdp_raw) # Final status print(f"\n✅ {YEAR} GDP data preprocessing complete!") print("\n=== Summary Statistics ===") if df_gdp_country is not None: print(f"Countries processed: {len(df_gdp_country)}") print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}") print( f"Total global GDP: ${df_gdp_country['gdp_total'].sum() / 1e12:.2f} trillion" ) if df_gdp_state is not None: print(f"US states processed: {len(df_gdp_state)}") print(f"Total US GDP: ${df_gdp_state['gdp_total'].sum() / 1e12:.2f} trillion") if __name__ == "__main__": main()