File size: 11,748 Bytes
20d4fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""
Preprocess GDP data for economic analysis.

This script downloads and processes GDP data from:
1. IMF API for country-level GDP data
2. BEA (Bureau of Economic Analysis) for US state-level GDP data

Output files:
- gdp_YYYY_country.csv (e.g., gdp_2024_country.csv): Country-level total GDP
- gdp_YYYY_us_state.csv (e.g., gdp_2024_us_state.csv): US state-level total GDP
"""

import io
import json
import warnings
from pathlib import Path

import httpx
import pandas as pd

# Global configuration
YEAR = 2024
DATA_INPUT_DIR = Path("../data/input")
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")


# Countries where Claude AI service is not available
# These will be excluded from all GDP data
EXCLUDED_COUNTRIES = [
    "AFG",
    "BLR",
    "COD",
    "CAF",
    "CHN",
    "CUB",
    "ERI",
    "ETH",
    "HKG",
    "IRN",
    "PRK",
    "LBY",
    "MLI",
    "MMR",
    "MAC",
    "NIC",
    "RUS",
    "SDN",
    "SOM",
    "SSD",
    "SYR",
    "VEN",
    "YEM",
]


def check_existing_files():
    """Check if processed GDP files already exist."""
    gdp_country_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
    gdp_state_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"

    if gdp_country_path.exists() and gdp_state_path.exists():
        print("βœ… GDP files already exist:")
        print(f"  - {gdp_country_path}")
        print(f"  - {gdp_state_path}")
        print("Skipping GDP preprocessing. Delete these files if you want to re-run.")
        return True
    return False


def load_country_gdp_data():
    """
    Load country-level GDP data from cache or IMF API.

    Returns:
        dict: Raw GDP data from IMF API, or None if fetch fails
    """
    # Check if raw data already exists
    raw_gdp_path = DATA_INPUT_DIR / f"imf_gdp_raw_{YEAR}.json"
    if raw_gdp_path.exists():
        print("Loading cached IMF GDP data...")
        with open(raw_gdp_path) as f:
            return json.load(f)

    # Download if not cached
    imf_total_gdp_url = "https://www.imf.org/external/datamapper/api/v1/NGDPD"  # IMF returns GDP in billions USD

    print("Fetching GDP data from IMF API...")
    try:
        with httpx.Client() as client:
            response = client.get(imf_total_gdp_url, timeout=30)
            response.raise_for_status()
            gdp_data = response.json()
            print("βœ“ Successfully fetched total GDP data from IMF API")

            # Save raw data for future use
            with open(raw_gdp_path, "w") as f:
                json.dump(gdp_data, f, indent=2)
            print(f"βœ“ Saved raw GDP data to {raw_gdp_path}")

            return gdp_data
    except Exception as e:
        raise ConnectionError(f"Failed to fetch data from IMF API: {e}") from e


def process_country_gdp_data(gdp_data):
    """
    Process IMF GDP data into standardized format.

    Args:
        gdp_data: Raw IMF API response

    Returns:
        pd.DataFrame: Processed country GDP data (excluding countries where service is not available)
    """
    # Extract GDP data for target year
    # Structure: {"values": {"NGDPD": {"countryiso3code": {"year": value}}}}
    gdp_values = gdp_data.get("values", {}).get("NGDPD", {})

    # Build records for target year data only
    gdp_records = []
    target_year = str(YEAR)
    missing_countries = []

    for countryiso3code, years_data in gdp_values.items():
        if isinstance(years_data, dict):
            if target_year in years_data and years_data[target_year]:
                gdp_value = years_data[target_year]
                # Convert from billions to actual dollars
                gdp_records.append(
                    {
                        "iso_alpha_3": countryiso3code,
                        "gdp_total": float(gdp_value)
                        * 1e9,  # Convert billions to dollars
                        "year": YEAR,
                    }
                )
            else:
                missing_countries.append(countryiso3code)

    if missing_countries:
        warnings.warn(
            f"{len(missing_countries)} countries missing {YEAR} GDP data. "
            f"Examples: {missing_countries[:5]}",
            UserWarning,
            stacklevel=2,
        )

    df_gdp = pd.DataFrame(gdp_records)

    if df_gdp.empty:
        raise ValueError(f"No GDP data available for year {YEAR}")

    # Apply country code mappings for mismatches between IMF and ISO3
    country_code_mappings = {
        "UVK": "XKX",  # Kosovo
        # Add more mappings as needed
    }

    for imf_code, iso3_code in country_code_mappings.items():
        df_gdp.loc[df_gdp["iso_alpha_3"] == imf_code, "iso_alpha_3"] = iso3_code

    # Filter to only keep countries with valid ISO-3 codes
    # This removes regional aggregates like ADVEC, AFQ, etc.
    iso_codes_path = DATA_INTERMEDIATE_DIR / "iso_country_codes.csv"
    df_iso = pd.read_csv(iso_codes_path, keep_default_na=False, na_values=[""])
    valid_iso3_codes = set(df_iso["iso_alpha_3"].unique())

    initial_aggregate_count = len(df_gdp)
    df_gdp = df_gdp[df_gdp["iso_alpha_3"].isin(valid_iso3_codes)]
    filtered_aggregates = initial_aggregate_count - len(df_gdp)

    if filtered_aggregates > 0:
        print(
            f"  Filtered out {filtered_aggregates} non-country codes (regional aggregates)"
        )

    # Filter out excluded countries (now using 3-letter codes directly)
    initial_count = len(df_gdp)
    df_gdp = df_gdp[~df_gdp["iso_alpha_3"].isin(EXCLUDED_COUNTRIES)]
    excluded_count = initial_count - len(df_gdp)

    if excluded_count > 0:
        print(f"  Excluded {excluded_count} countries where service is not available")

    # Save processed GDP data
    processed_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
    df_gdp.to_csv(processed_gdp_path, index=False)

    print(f"βœ“ Saved processed GDP data to {processed_gdp_path}")
    print(f"  Countries with {YEAR} GDP data: {len(df_gdp)}")
    print(f"  Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
    print(f"  Total global GDP: ${df_gdp['gdp_total'].sum() / 1e12:.2f} trillion")

    return df_gdp


def load_state_gdp_data():
    """
    Load US state GDP data from BEA file.

    Returns:
        pd.DataFrame: Raw state GDP data, or None if file not found
    """
    state_gdp_raw_path = DATA_INPUT_DIR / f"bea_us_state_gdp_{YEAR}.csv"

    if not state_gdp_raw_path.exists():
        error_msg = f"""
State GDP data not found at: {state_gdp_raw_path}

To obtain this data:
1. Go to: https://apps.bea.gov/itable/?ReqID=70&step=1
2. Select: SASUMMARY State annual summary statistics (area = "United States", statistic = Gross domestic product (GDP), unit of measure = "Levels")
3. Download the CSV file for year {YEAR}
4. Save it as: bea_us_state_gdp_{YEAR}.csv
5. Place it in your data input directory
"""
        raise FileNotFoundError(error_msg)

    print("Loading US state GDP data...")
    # Parse CSV skipping the first 3 rows (BEA metadata)
    df_state_gdp_raw = pd.read_csv(state_gdp_raw_path, skiprows=3)
    df_state_gdp_raw.columns = ["GeoFips", "State", f"gdp_{YEAR}_millions"]

    return df_state_gdp_raw


def process_state_gdp_data(df_state_gdp_raw):
    """
    Process BEA state GDP data into standardized format.

    Args:
        df_state_gdp_raw: Raw BEA data

    Returns:
        pd.DataFrame: Processed state GDP data
    """

    # Remove the US total row (GeoFips = "00000")
    df_state_gdp = df_state_gdp_raw[df_state_gdp_raw["GeoFips"] != "00000"].copy()

    # Remove all rows starting from empty line before "Legend/Footnotes" marker
    # BEA files have footer information after the data, with an empty line before
    legend_index = (
        df_state_gdp[
            df_state_gdp["GeoFips"].str.contains("Legend", case=False, na=False)
        ].index[0]
        - 1
    )
    df_state_gdp = df_state_gdp.iloc[:legend_index].copy()
    print(f"  Removed footer rows starting from 'Legend/Footnotes'")

    # Convert GDP from millions to actual dollars
    df_state_gdp["gdp_total"] = df_state_gdp[f"gdp_{YEAR}_millions"] * 1e6

    # Clean state names
    df_state_gdp["State"] = df_state_gdp["State"].str.strip()

    # Get state codes
    state_code_dict = get_state_codes()
    df_state_gdp["state_code"] = df_state_gdp["State"].map(state_code_dict)

    # Check for missing state codes
    missing_codes = df_state_gdp[df_state_gdp["state_code"].isna()]
    if not missing_codes.empty:
        raise ValueError(
            f"Could not find state codes for: {missing_codes['State'].tolist()}\n"
            f"All BEA state names should match Census state codes after filtering."
        )

    # Select and rename columns
    df_state_gdp_final = df_state_gdp[
        ["state_code", "State", "gdp_total", f"gdp_{YEAR}_millions"]
    ].copy()
    df_state_gdp_final.columns = [
        "state_code",
        "state_name",
        "gdp_total",
        "gdp_millions",
    ]
    df_state_gdp_final["year"] = YEAR

    # Save processed state GDP data
    processed_state_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
    df_state_gdp_final.to_csv(processed_state_gdp_path, index=False)

    print(
        f"βœ“ Processed state GDP data for {len(df_state_gdp_final)} states/territories"
    )
    print(
        f"  Total US GDP: ${df_state_gdp_final['gdp_total'].sum() / 1e12:.2f} trillion"
    )
    print(f"βœ“ Saved to {processed_state_gdp_path}")

    return df_state_gdp_final


def get_state_codes():
    """
    Get US state codes from Census Bureau.

    Returns:
        dict: Mapping of state names to abbreviations
    """
    state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"

    if state_codes_path.exists():
        print("  Loading cached state codes...")
        df_state_codes = pd.read_csv(state_codes_path, sep="|")
    else:
        print("  Downloading state codes from Census Bureau...")
        response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
        response.raise_for_status()

        # Save for future use
        with open(state_codes_path, "w") as f:
            f.write(response.text)
        print(f"  Cached state codes to {state_codes_path}")

        df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")

    # Create mapping dictionary
    state_code_dict = dict(
        zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
    )

    return state_code_dict


def main():
    """Main function to run GDP preprocessing."""
    # Check if files already exist
    if check_existing_files():
        return

    print("=" * 60)
    print(f"PROCESSING {YEAR} GDP DATA")
    print("=" * 60)

    # Process country-level GDP from IMF
    print(f"\n=== Country-Level GDP (IMF) - Year {YEAR} ===")
    gdp_data = load_country_gdp_data()
    df_gdp_country = process_country_gdp_data(gdp_data)

    # Process US state-level GDP from BEA
    print(f"\n=== US State-Level GDP (BEA) - Year {YEAR} ===")
    df_state_gdp_raw = load_state_gdp_data()
    df_gdp_state = process_state_gdp_data(df_state_gdp_raw)

    # Final status
    print(f"\nβœ… {YEAR} GDP data preprocessing complete!")
    print("\n=== Summary Statistics ===")
    if df_gdp_country is not None:
        print(f"Countries processed: {len(df_gdp_country)}")
        print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
        print(
            f"Total global GDP: ${df_gdp_country['gdp_total'].sum() / 1e12:.2f} trillion"
        )
    if df_gdp_state is not None:
        print(f"US states processed: {len(df_gdp_state)}")
        print(f"Total US GDP: ${df_gdp_state['gdp_total'].sum() / 1e12:.2f} trillion")


if __name__ == "__main__":
    main()