e93bcf3247289b9ad5d970633a50453d
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll02-spanish on the dim/tldr_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.8507
- Data Size: 1.0
- Epoch Runtime: 33.2750
- Accuracy: 0.7649
- F1 Macro: 0.8035
- Rouge1: 0.7656
- Rouge2: 0.0
- Rougel: 0.7653
- Rougelsum: 0.7649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6917 | 0 | 2.6219 | 0.2486 | 0.0808 | 0.2486 | 0.0 | 0.2486 | 0.2482 |
| No log | 1 | 178 | 1.5785 | 0.0078 | 4.1250 | 0.2763 | 0.0876 | 0.2763 | 0.0 | 0.2756 | 0.2763 |
| No log | 2 | 356 | 1.3074 | 0.0156 | 3.7850 | 0.6080 | 0.4121 | 0.6087 | 0.0 | 0.6087 | 0.6072 |
| No log | 3 | 534 | 0.8929 | 0.0312 | 4.9785 | 0.5945 | 0.4358 | 0.5945 | 0.0 | 0.5945 | 0.5952 |
| No log | 4 | 712 | 0.8155 | 0.0625 | 6.6916 | 0.7188 | 0.5622 | 0.7202 | 0.0 | 0.7195 | 0.7195 |
| No log | 5 | 890 | 0.8059 | 0.125 | 8.7791 | 0.7259 | 0.5557 | 0.7266 | 0.0 | 0.7259 | 0.7251 |
| 0.0577 | 6 | 1068 | 1.0613 | 0.25 | 12.4444 | 0.6371 | 0.4495 | 0.6378 | 0.0 | 0.6371 | 0.6378 |
| 0.7498 | 7 | 1246 | 0.7125 | 0.5 | 19.1268 | 0.7457 | 0.5951 | 0.7468 | 0.0 | 0.7457 | 0.7457 |
| 0.6177 | 8.0 | 1424 | 0.6985 | 1.0 | 34.6716 | 0.7450 | 0.7396 | 0.7457 | 0.0 | 0.7457 | 0.7450 |
| 0.56 | 9.0 | 1602 | 0.6266 | 1.0 | 32.5332 | 0.7692 | 0.7949 | 0.7699 | 0.0 | 0.7699 | 0.7699 |
| 0.4602 | 10.0 | 1780 | 0.6521 | 1.0 | 32.9004 | 0.7585 | 0.7834 | 0.7592 | 0.0 | 0.7585 | 0.7592 |
| 0.408 | 11.0 | 1958 | 0.7225 | 1.0 | 32.9142 | 0.7422 | 0.7822 | 0.7422 | 0.0 | 0.7422 | 0.7422 |
| 0.3096 | 12.0 | 2136 | 0.7663 | 1.0 | 32.6184 | 0.7585 | 0.7985 | 0.7585 | 0.0 | 0.7592 | 0.7589 |
| 0.2925 | 13.0 | 2314 | 0.8507 | 1.0 | 33.2750 | 0.7649 | 0.8035 | 0.7656 | 0.0 | 0.7653 | 0.7649 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 1