codersan commited on
Commit
025faae
·
verified ·
1 Parent(s): e3e51f2

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:142964
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: intfloat/multilingual-e5-small
10
+ widget:
11
+ - source_sentence: نمونه هایی از تئوری های توطئه ها که به نظر می رسد درست است؟
12
+ sentences:
13
+ - آیا نظریه های توطئه ای وجود دارد که احتمالاً صادق است؟نظریه های توطئه ای که معلوم
14
+ شد درست است؟
15
+ - بازیگران پانتومیم در حال اجرا بر روی صحنه هستند.
16
+ - چرا میل الکترون فلورین کمتر از کلر است ، در حالی که فلورین الکترونگاتیو ترین عنصر
17
+ است؟
18
+ - source_sentence: بهترین و بدون درد برای کشتن خودم چیست؟
19
+ sentences:
20
+ - بهترین استراتژی ها برای آماده سازی برای GMAT چیست؟
21
+ - آیا ارزش دارد دو سال برای NIT کاهش یابد؟
22
+ - بدون درد ترین روش برای خودکشی چیست؟
23
+ - source_sentence: چه کاری باید انجام دهم در حالی که B-Tech را در مهندسی مکانیک برای
24
+ چشم انداز بهتر شغلی دنبال می کنم؟
25
+ sentences:
26
+ - چگونه می توانیم مشاوره کسب و کار را شروع کنیم؟
27
+ - فرصت های شغلی در شرکت ها پس از M.Tech در مهندسی هوافضا با B.Tech در مهندسی مکانیک
28
+ چیست؟
29
+ - آیا روانپزشکی یک شبه علوم است؟
30
+ - source_sentence: چرا گربه ها وقتی خیار را در مقابل آن قرار می دهید می ترسند؟
31
+ sentences:
32
+ - چرا گربه ها از خیار ترسیده اند؟
33
+ - هک در زندگی روزمره چیست؟
34
+ - چگونه می توانم به سرعت وزن خود را افزایش دهم؟
35
+ - source_sentence: مرزهای صفحه چیست؟برخی از انواع چیست؟
36
+ sentences:
37
+ - مرزهای صفحه چیست؟
38
+ - اتانول چند ایزومر دارد؟
39
+ - چه سؤالاتی در مورد Quora پرسیده نشده است؟
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ ---
43
+
44
+ # SentenceTransformer based on intfloat/multilingual-e5-small
45
+
46
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** Sentence Transformer
52
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
53
+ - **Maximum Sequence Length:** 512 tokens
54
+ - **Output Dimensionality:** 384 dimensions
55
+ - **Similarity Function:** Cosine Similarity
56
+ <!-- - **Training Dataset:** Unknown -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
63
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
64
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
65
+
66
+ ### Full Model Architecture
67
+
68
+ ```
69
+ SentenceTransformer(
70
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
71
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
72
+ (2): Normalize()
73
+ )
74
+ ```
75
+
76
+ ## Usage
77
+
78
+ ### Direct Usage (Sentence Transformers)
79
+
80
+ First install the Sentence Transformers library:
81
+
82
+ ```bash
83
+ pip install -U sentence-transformers
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+ ```python
88
+ from sentence_transformers import SentenceTransformer
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SentenceTransformer("codersan/newfa_e5small_7")
92
+ # Run inference
93
+ sentences = [
94
+ 'مرزهای صفحه چیست؟برخی از انواع چیست؟',
95
+ 'مرزهای صفحه چیست؟',
96
+ 'اتانول چند ایزومر دارد؟',
97
+ ]
98
+ embeddings = model.encode(sentences)
99
+ print(embeddings.shape)
100
+ # [3, 384]
101
+
102
+ # Get the similarity scores for the embeddings
103
+ similarities = model.similarity(embeddings, embeddings)
104
+ print(similarities.shape)
105
+ # [3, 3]
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Dataset
147
+
148
+ #### Unnamed Dataset
149
+
150
+
151
+ * Size: 142,964 training samples
152
+ * Columns: <code>anchor</code> and <code>positive</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | anchor | positive |
155
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
156
+ | type | string | string |
157
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.39 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 57 tokens</li></ul> |
158
+ * Samples:
159
+ | anchor | positive |
160
+ |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------|
161
+ | <code>گاو یونجه می خورد</code> | <code>گاو در حال چریدن است</code> |
162
+ | <code>ماشینی به شکلی خطرناک از روی دختری می‌پرد.</code> | <code>دختر با بی‌احتیاطی روی ماشین می‌پرد.</code> |
163
+ | <code>چگونه می توانم کارتهای هدیه iTunes رایگان را در هند دریافت کنم؟</code> | <code>چگونه می توانم کارتهای هدیه iTunes رایگان دریافت کنم؟</code> |
164
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
165
+ ```json
166
+ {
167
+ "scale": 20.0,
168
+ "similarity_fct": "cos_sim"
169
+ }
170
+ ```
171
+
172
+ ### Training Hyperparameters
173
+ #### Non-Default Hyperparameters
174
+
175
+ - `per_device_train_batch_size`: 64
176
+ - `learning_rate`: 1e-05
177
+ - `weight_decay`: 0.01
178
+ - `max_grad_norm`: 0.2
179
+ - `num_train_epochs`: 2
180
+ - `batch_sampler`: no_duplicates
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: no
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 64
190
+ - `per_device_eval_batch_size`: 8
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 1e-05
197
+ - `weight_decay`: 0.01
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 0.2
202
+ - `num_train_epochs`: 2
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.0
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: False
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: None
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: None
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `include_for_metrics`: []
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: False
294
+ - `use_liger_kernel`: False
295
+ - `eval_use_gather_object`: False
296
+ - `average_tokens_across_devices`: False
297
+ - `prompts`: None
298
+ - `batch_sampler`: no_duplicates
299
+ - `multi_dataset_batch_sampler`: proportional
300
+
301
+ </details>
302
+
303
+ ### Training Logs
304
+ | Epoch | Step | Training Loss |
305
+ |:------:|:----:|:-------------:|
306
+ | 0.0448 | 100 | 0.2696 |
307
+ | 0.0895 | 200 | 0.0953 |
308
+ | 0.1343 | 300 | 0.094 |
309
+ | 0.1791 | 400 | 0.0722 |
310
+ | 0.2238 | 500 | 0.0719 |
311
+ | 0.2686 | 600 | 0.0693 |
312
+ | 0.3133 | 700 | 0.079 |
313
+ | 0.3581 | 800 | 0.0711 |
314
+ | 0.4029 | 900 | 0.0699 |
315
+ | 0.4476 | 1000 | 0.0612 |
316
+ | 0.4924 | 1100 | 0.0759 |
317
+ | 0.5372 | 1200 | 0.0704 |
318
+ | 0.5819 | 1300 | 0.0663 |
319
+ | 0.6267 | 1400 | 0.0612 |
320
+ | 0.6714 | 1500 | 0.0717 |
321
+ | 0.7162 | 1600 | 0.0665 |
322
+ | 0.7610 | 1700 | 0.0629 |
323
+ | 0.8057 | 1800 | 0.0631 |
324
+ | 0.8505 | 1900 | 0.0619 |
325
+ | 0.8953 | 2000 | 0.0636 |
326
+ | 0.9400 | 2100 | 0.0616 |
327
+ | 0.9848 | 2200 | 0.0575 |
328
+ | 1.0295 | 2300 | 0.0596 |
329
+ | 1.0743 | 2400 | 0.0589 |
330
+ | 1.1191 | 2500 | 0.061 |
331
+ | 1.1638 | 2600 | 0.0507 |
332
+ | 1.2086 | 2700 | 0.0464 |
333
+ | 1.2534 | 2800 | 0.0442 |
334
+ | 1.2981 | 2900 | 0.055 |
335
+ | 1.3429 | 3000 | 0.0586 |
336
+ | 1.3876 | 3100 | 0.0555 |
337
+ | 1.4324 | 3200 | 0.0473 |
338
+ | 1.4772 | 3300 | 0.0471 |
339
+ | 1.5219 | 3400 | 0.0579 |
340
+ | 1.5667 | 3500 | 0.0499 |
341
+ | 1.6115 | 3600 | 0.0477 |
342
+ | 1.6562 | 3700 | 0.0558 |
343
+ | 1.7010 | 3800 | 0.0534 |
344
+ | 1.7457 | 3900 | 0.0538 |
345
+ | 1.7905 | 4000 | 0.0543 |
346
+ | 1.8353 | 4100 | 0.047 |
347
+ | 1.8800 | 4200 | 0.0532 |
348
+ | 1.9248 | 4300 | 0.0567 |
349
+ | 1.9696 | 4400 | 0.0474 |
350
+
351
+
352
+ ### Framework Versions
353
+ - Python: 3.10.12
354
+ - Sentence Transformers: 3.3.1
355
+ - Transformers: 4.47.0
356
+ - PyTorch: 2.5.1+cu121
357
+ - Accelerate: 1.2.1
358
+ - Datasets: 4.0.0
359
+ - Tokenizers: 0.21.0
360
+
361
+ ## Citation
362
+
363
+ ### BibTeX
364
+
365
+ #### Sentence Transformers
366
+ ```bibtex
367
+ @inproceedings{reimers-2019-sentence-bert,
368
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
369
+ author = "Reimers, Nils and Gurevych, Iryna",
370
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
371
+ month = "11",
372
+ year = "2019",
373
+ publisher = "Association for Computational Linguistics",
374
+ url = "https://arxiv.org/abs/1908.10084",
375
+ }
376
+ ```
377
+
378
+ #### MultipleNegativesRankingLoss
379
+ ```bibtex
380
+ @misc{henderson2017efficient,
381
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
382
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
383
+ year={2017},
384
+ eprint={1705.00652},
385
+ archivePrefix={arXiv},
386
+ primaryClass={cs.CL}
387
+ }
388
+ ```
389
+
390
+ <!--
391
+ ## Glossary
392
+
393
+ *Clearly define terms in order to be accessible across audiences.*
394
+ -->
395
+
396
+ <!--
397
+ ## Model Card Authors
398
+
399
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
400
+ -->
401
+
402
+ <!--
403
+ ## Model Card Contact
404
+
405
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
406
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a815da9063c9ef8f8b32095364a6a0e129dd145aa3235989b5008e25552fe54d
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }