# model_card.yaml model_name: "AONomaly Detection Model" model_type: "autoencoder" language: "en" license: "mit" tags: - anomaly-detection - autoencoder - edge-ai - openvino - onnx - computer-vision - unsupervised-learning task_categories: - anomaly-detection - image-classification library_name: "pytorch" datasets: - name: "Casting Product Image Dataset" source: "https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product" metrics: - name: "Reconstruction Error Threshold" type: "MSE" value: 0.01 model-index: - name: "AONomaly Detection Model" results: - task: type: "anomaly-detection" name: "Casting Defect Detection" dataset: name: "Casting Product Image Dataset" type: "image" metrics: - name: "MSE Reconstruction Error" type: "float" value: 0.01 inference: input_format: "Grayscale image (128x128)" output_format: "Reconstructed image + anomaly score" intended_use: primary_use: "Industrial defect inspection via anomaly detection." limitations: - "Requires consistent lighting and background conditions." - "Trained specifically on metal casting images." author: name: "Arunima Surendran" role: "AI Developer & Researcher" repository: "https://github.com/arunimakanavu/aonmalydetectionmodel" email: "N/A" framework_versions: pytorch: "2.2.0" openvino: "2024.1" onnx: "1.15.0"