--- language: - en license: mit library_name: pytorch tags: - autoencoder - anomaly-detection - computer-vision - manufacturing - onnx - openvino - edge-ai pipeline_tag: image-classification base_model: custom/autoencoder datasets: - custom metrics: - reconstruction-error --- # Anomaly Detection Model – Edge AI for Casting Defect Inspection ## Overview The **Anomaly Detection Model** is an **autoencoder-based anomaly detection system** fine-tuned for industrial **casting defect inspection**. It identifies whether a metal casting image is *normal (OK)* or *defective* by reconstructing input images and analyzing reconstruction errors. This model is designed for **Edge AI deployment**, optimized via **ONNX** and **OpenVINO IR** formats to run efficiently on low-power Intel edge devices. --- ## Model Details - **Architecture:** Convolutional Autoencoder - **Framework:** PyTorch - **Training Objective:** Minimize reconstruction loss (MSE) for normal samples - **Optimization:** ONNX and OpenVINO IR export for edge inference - **Task:** Unsupervised anomaly detection - **Domain:** Industrial visual inspection --- ## Repository Structure ``` ├── casting_autoencoder.pth # Trained PyTorch model ├── casting_autoencoder.onnx # ONNX export ├── model.bin # OpenVINO IR model (bin) ├── model.xml # OpenVINO IR model (xml) ├── model_card.yaml ├── requirements.txt # Dependencies ├── inference.py # inference code └── README.md # Model card (this file) ``` --- ## Dataset **Dataset:** Casting Product Image Dataset (Kaggle) - **Classes:** Defective / Normal - **Modality:** Grayscale industrial images - **Training Strategy:** Only *normal* samples used for training the autoencoder. --- ## Key Configuration Parameters - **Image Size**: 304×304 pixels - **Batch Size**: 32 - **Learning Rate**: 1e-3 - **Epochs**: 10 - **Loss Function**: MSE Loss - **Optimizer**: Adam ## Model Outputs The training script generates: - `casting_autoencoder.pth` - PyTorch model weights - `casting_autoencoder.onnx` - ONNX export for deployment - Calibrated anomaly threshold based on defective samples ## Anomaly Detection Process 1. **Training Phase**: Model learns to reconstruct normal casting images 2. **Threshold Calibration**: Uses defective samples to determine optimal threshold 3. **Inference**: Images with reconstruction error > threshold are flagged as defective ## Performance - **Final Training Loss**: 0.0005 - **Suggested Threshold**: 0.0004 - **Model Type**: Unsupervised anomaly detection - **Architecture**: Convolutional Autoencoder ## Applications This model is designed for: - Quality control in metal casting manufacturing - Real-time defect detection on production lines - Automated visual inspection systems - Edge deployment in industrial environments ## Model Features - **Unsupervised Learning**: Trained only on normal samples - **Real-time Capable**: Optimized for edge deployment - **ONNX Compatible**: Ready for production deployment - **Automatic Thresholding**: Self-calibrating anomaly detection - **Industrial Grade**: Tested on real manufacturing data ## Technical Details The model uses a symmetric encoder-decoder architecture with: - Stride-2 convolutions for downsampling - Transposed convolutions for upsampling - ReLU activation in hidden layers - Sigmoid output activation for pixel reconstruction. --- ## Export & Deployment | Format | Purpose | |---------|----------| | `.pth` | Original PyTorch model | | `.onnx` | Framework-independent inference | | `.xml` / `.bin` | OpenVINO IR format for edge devices | **Edge Optimization:** Model converted and optimized using `openvino.convert_model()`. --- ## Intended Use - Automated visual inspection for manufacturing/QA systems. - Real-time edge deployment in industrial environments. **Not recommended for:** - Non-industrial datasets. - Scenarios with significant domain drift (e.g., lighting changes or non-casting objects). --- ## Limitations - Accuracy depends on lighting and background consistency. - Model trained primarily on grayscale casting images. - Thresholds for anomaly detection must be tuned for specific deployment environments. --- ## License This project is released under the MIT License. --- ## Author **Arunima Surendran** Applied AI Engineer [GitHub Repository](https://github.com/arunimakanavu/anomalydetectionmodel) ---