--- license: apache-2.0 base_model: EleutherAI/pythia-410m tags: - peft - lora - pythia - fine-tuned - grey-chain library_name: peft --- # Amit-GC Trained Model This is a LoRA fine-tuned version of EleutherAI/pythia-410m, trained on Grey Chain content about AI and digital transformation. ## Model Details - **Base Model**: EleutherAI/pythia-410m (410M parameters) - **Training Method**: LoRA (Low-Rank Adaptation) - **Training Data**: Grey Chain content about AI & digital transformation - **Trainable Parameters**: ~0.77% of base model ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch # Load tokenizer and base model tokenizer = AutoTokenizer.from_pretrained("akp4u/amit-gc-trained-model") base_model = AutoModelForCausalLM.from_pretrained( "EleutherAI/pythia-410m", device_map="cpu", torch_dtype=torch.float32 ) # Load LoRA adapters model = PeftModel.from_pretrained(base_model, "akp4u/amit-gc-trained-model") # Generate text prompt = "What is Grey Chain?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Details - Trained for 3 epochs on Grey Chain content - Uses LoRA with r=8, alpha=16, dropout=0.05 - Optimized for Mac/CPU inference (no quantization required) ## Sample Outputs The model can answer questions about: - Grey Chain services and capabilities - AI and digital transformation - Machine learning concepts - Prompt engineering ## Limitations - Small model (410M parameters) - responses may be limited - Trained on specific domain content - Best for Grey Chain and AI-related queries