DavidGF commited on
Commit
bc3b293
Β·
verified Β·
1 Parent(s): 8a9f449

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -1
README.md CHANGED
@@ -26,8 +26,9 @@ The model is trained jointly on **English, German, Italian, French, and Spanish*
26
 
27
  As a baseline, we compare against **`urchade/gliner_multi-v2.1`**, which is built on **`microsoft/mdeberta-v3-base`**, a multilingual DeBERTa v3 model that extends BERT/RoBERTa with **disentangled attention** and an **enhanced mask decoder**, architectural features that improve token-level representations and benefit sequence-labeling tasks such as NER.
28
 
 
29
  > πŸ” **Demo:** You can try the model directly in the browser via our Hugging Face Space:
30
- > https://huggingface.co/spaces/VAGOsolutions/mmbert_GLiNER_DEMO
31
 
32
  ---
33
 
@@ -99,6 +100,9 @@ We compare **SauerkrautLM-GLiNER** against two baselines:
99
  | science_spanish.jsonl | 555 | 32 | 54.95 / 55.95 / **55.45** | 23.89 / 5.88 / 9.43 |
100
  | **AVERAGE** | **20,359** | – | **52.72 / 59.13 / 55.34** | **48.10 / 25.65 / 32.32** |
101
 
 
 
 
102
  **Key Takeaway:** SauerkrautLM-GLiNER achieves **+23.02 F1 points** over gliner_multi-v2.1 on average, with particularly strong improvements in recall across all non-English languages.
103
 
104
  ---
@@ -114,6 +118,9 @@ We compare **SauerkrautLM-GLiNER** against two baselines:
114
  | pii_spanish.jsonl | 500 | 20 | 55.05 / 36.13 / **43.62** | 39.86 / 20.24 / 26.85 | 66.84 / 33.25 / 44.41 |
115
  | **AVERAGE** | **2,500** | – | **56.05 / 37.54 / 44.94** | **36.49 / 18.22 / 24.31** | **68.52 / 32.58 / 44.12** |
116
 
 
 
 
117
  **Key Takeaway:** SauerkrautLM-GLiNER performs competitively on PII detection despite being a general-purpose NER model (not PII-specialized), achieving **+20.63 F1** over gliner_multi-v2.1 and matching the specialized gliner_multi_pii-v1 model.
118
 
119
  ---
 
26
 
27
  As a baseline, we compare against **`urchade/gliner_multi-v2.1`**, which is built on **`microsoft/mdeberta-v3-base`**, a multilingual DeBERTa v3 model that extends BERT/RoBERTa with **disentangled attention** and an **enhanced mask decoder**, architectural features that improve token-level representations and benefit sequence-labeling tasks such as NER.
28
 
29
+ # Demo
30
  > πŸ” **Demo:** You can try the model directly in the browser via our Hugging Face Space:
31
+ > **https://huggingface.co/spaces/VAGOsolutions/SauerkrautLM-GLiNER-Demo**
32
 
33
  ---
34
 
 
100
  | science_spanish.jsonl | 555 | 32 | 54.95 / 55.95 / **55.45** | 23.89 / 5.88 / 9.43 |
101
  | **AVERAGE** | **20,359** | – | **52.72 / 59.13 / 55.34** | **48.10 / 25.65 / 32.32** |
102
 
103
+
104
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64b999a40b24527e9c25583a/ZmIvgb5cFJENCRVtw-1qt.png" width="600" height="auto">
105
+
106
  **Key Takeaway:** SauerkrautLM-GLiNER achieves **+23.02 F1 points** over gliner_multi-v2.1 on average, with particularly strong improvements in recall across all non-English languages.
107
 
108
  ---
 
118
  | pii_spanish.jsonl | 500 | 20 | 55.05 / 36.13 / **43.62** | 39.86 / 20.24 / 26.85 | 66.84 / 33.25 / 44.41 |
119
  | **AVERAGE** | **2,500** | – | **56.05 / 37.54 / 44.94** | **36.49 / 18.22 / 24.31** | **68.52 / 32.58 / 44.12** |
120
 
121
+
122
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64b999a40b24527e9c25583a/0I_t3mQVdt-91gaeUhi9p.png" width="600" height="auto">
123
+
124
  **Key Takeaway:** SauerkrautLM-GLiNER performs competitively on PII detection despite being a general-purpose NER model (not PII-specialized), achieving **+20.63 F1** over gliner_multi-v2.1 and matching the specialized gliner_multi_pii-v1 model.
125
 
126
  ---