StevanLS commited on
Commit
8be8774
·
verified ·
1 Parent(s): 35ec85f

Upload DDPG Panda Reach model for 100 000 timesteps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachJointsDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachJointsDense-v3
16
+ type: PandaReachJointsDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -21.06 +/- 6.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **PandaReachJointsDense-v3**
25
+ This is a trained model of a **DDPG** agent playing **PandaReachJointsDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__firstlineno__": 314, "__doc__": "\nPolicy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n:param observation_space: Observation space\n:param action_space: Action space\n:param lr_schedule: Learning rate schedule (could be constant)\n:param net_arch: The specification of the policy and value networks.\n:param activation_fn: Activation function\n:param features_extractor_class: Features extractor to use.\n:param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n:param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n:param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n:param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n:param n_critics: Number of critic networks to create.\n:param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n", "__init__": "<function MultiInputPolicy.__init__ at 0x12b4a5080>", "__static_attributes__": [], "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12b4a2b40>"}, "verbose": 1, "policy_kwargs": {"n_critics": 1}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739907821907515000, "learning_rate": 0.001, "tensorboard_log": "runs/1i1l8oe5", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAACwOFz4nbGs+Vw8oP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAALA4XPidsaz5XDyg/SUq+vD2tAL88hck+lGgOSwFLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[0.147515 0.22990476 0.65648407]]", "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]", "observation": "[[ 0.147515 0.22990476 0.65648407 -0.02322878 -0.5026434 0.39359462]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHgDHj7U9Wc+YCUlP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAAeAMePtT1Zz5gJSU/XuAzvqAJAD8UBz89lGgOSwFLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[0.1543101 0.2265237 0.64510155]]", "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]", "observation": "[[ 0.1543101 0.2265237 0.64510155 -0.17566058 0.50014687 0.04663761]]"}, "_episode_num": 3064, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEE20VrRBu6MAWyUSzKMAXSUR0B5ozE0iyIIdX2UKGgGR8A9k62OQyRCaAdLMmgIR0B5pqnfl6qsdX2UKGgGR7+hhc7hegL7aAdLAWgIR0B5prv+fh/BdX2UKGgGR7+l3+uNgjQiaAdLAWgIR0B5ps3T/hl2dX2UKGgGR8AzAI/Z/Tb4aAdLMmgIR0B5qlhrnDBNdX2UKGgGR8AyBTfBN21VaAdLMmgIR0B5rehTOxB3dX2UKGgGR8AtFO0svqTsaAdLMmgIR0B5sWp97WupdX2UKGgGR8BChNTLns9kaAdLMmgIR0B5tOdoWYWtdX2UKGgGR8BBGsiSq2jPaAdLMmgIR0B5uGws5GSZdX2UKGgGR8BCQ3gUDdP+aAdLMmgIR0B5u+U/wAlwdX2UKGgGR8BB4Ire67NCaAdLMmgIR0B5v1sdkrf+dX2UKGgGR7+nj2i+L3sYaAdLAWgIR0B5v24nWrfcdX2UKGgGR8A5sKKHfuTiaAdLMmgIR0B5wwqTbFjvdX2UKGgGR8A5AGAkLQXzaAdLMmgIR0B5xoV2zOX3dX2UKGgGR8BDgyr5qM3qaAdLMmgIR0B5yf/2kBS2dX2UKGgGR8A7Rbuc+aBqaAdLMmgIR0B5zXLlmvnsdX2UKGgGR8A+hz5XU6PsaAdLMmgIR0B50QBDG96DdX2UKGgGR8BCJNjslb/waAdLMmgIR0B51HL3bmEHdX2UKGgGR8A6HEnssxwiaAdLMmgIR0B51/YODrZ8dX2UKGgGR8A+hDOTq0MPaAdLMmgIR0B523qxC6YmdX2UKGgGR8A9pgbZOBUaaAdLMmgIR0B53wd92HLzdX2UKGgGR8AqU1O0svqUaAdLMmgIR0B54pyHVPN3dX2UKGgGR8A0L/Z/Tb35aAdLMmgIR0B55jBCUorndX2UKGgGR8BAkTwlSjxkaAdLMmgIR0B56aMHbAUMdX2UKGgGR8BEnuJcgQpXaAdLMmgIR0B57TVEuxr0dX2UKGgGR8BBmtIkJKJ3aAdLMmgIR0B58K/9Hc1wdX2UKGgGR8BAuCkfs/puaAdLMmgIR0B59C4kNWludX2UKGgGR8A/IG3WnTAnaAdLMmgIR0B596iM5wOwdX2UKGgGR8Awh+BYmsvJaAdLMmgIR0B5+yThYNiIdX2UKGgGR8BCIBnBciW3aAdLMmgIR0B5/pTwUg0TdX2UKGgGR8A+OOWSlnAZaAdLMmgIR0B6Aha6jFhodX2UKGgGR8AqwzZ6D5CXaAdLMmgIR0B6BbIxQBPsdX2UKGgGR8A4o4YaYNRWaAdLMmgIR0B6CVD9fkWAdX2UKGgGR8A9hRhMJx//aAdLMmgIR0B6DM5Ke05VdX2UKGgGR8A1Cmvnr6ciaAdLMmgIR0B6EDu3MINWdX2UKGgGR8BAxVOsT37DaAdLMmgIR0B6E69Zid8RdX2UKGgGR8A63zQeFL39aAdLMmgIR0B6F0dxQzk7dX2UKGgGR8AyZ1SflIVeaAdLMmgIR0B6GsAIY3vQdX2UKGgGR8Ay0iosI3R5aAdLMmgIR0B6Hjs1KoQ4dX2UKGgGR8BDZnAAQxvfaAdLMmgIR0B6IbO/tY0VdX2UKGgGR8A3yYcNpdrwaAdLMmgIR0B6JUlv60pmdX2UKGgGR8A7hrUb1h9caAdLMmgIR0B6KP1DjR2KdX2UKGgGR8BEDC83++/QaAdLMmgIR0B6LISqU/wBdX2UKGgGR8Aw1hfjS5RTaAdLMmgIR0B6L/NX5nDjdX2UKGgGR8A/fmPYFqzraAdLMmgIR0B6M4aIeo1ldX2UKGgGR8BB/KsMiKR/aAdLMmgIR0B6Nv0HyEtedX2UKGgGR8A+zIa99MK1aAdLMmgIR0B6OnwWnCO4dX2UKGgGR8A+y+CbtqpMaAdLMmgIR0B6PgQK8cuKdX2UKGgGR8ASYX2ugYgraAdLMmgIR0B6QZ3wCr93dX2UKGgGR8ApFWEK3NLUaAdLMmgIR0B6RR0Rvm5ldX2UKGgGR8BFHqIacZtOaAdLMmgIR0B6SJQWN3nqdX2UKGgGR8A2IbS7Xg+AaAdLMmgIR0B6TCI2wV0tdX2UKGgGR8A05z9jwx33aAdLMmgIR0B6T8lw97ngdX2UKGgGR8AhgG7BfrrxaAdLMmgIR0B6U1IwudwvdX2UKGgGR8A9A4oJAt4BaAdLMmgIR0B6VtPUKArhdX2UKGgGR7+iouPFNtZWaAdLAWgIR0B6VuetjkMkdX2UKGgGR8A6V6mfoRqXaAdLMmgIR0B6Wng9/z8QdX2UKGgGR7+iCxu89Oh1aAdLAWgIR0B6WoskIHC5dX2UKGgGR8AyqSs8xKxtaAdLMmgIR0B6XiI/JNj9dX2UKGgGR8A5v2Bas6q9aAdLMmgIR0B6YZY1YQrddX2UKGgGR8AxRaV2Rq46aAdLMmgIR0B6ZSO3lS0jdX2UKGgGR8BAXgH/tICmaAdLMmgIR0B6aLBBRhttdX2UKGgGR8BA2rtVrAP/aAdLMmgIR0B6bDr0J4SpdX2UKGgGR8AheC7K7qY7aAdLMmgIR0B6b7f1pTMrdX2UKGgGR8AyethNM496aAdLMmgIR0B6c1p7CzkZdX2UKGgGR8AhthsImgJ1aAdLMmgIR0B6dt2r4nF6dX2UKGgGR8AkBKdQO4G2aAdLMmgIR0B6em5AhStOdX2UKGgGR8BAHgaWHDaXaAdLMmgIR0B6fec5Ke05dX2UKGgGR8AxtHEdeY2LaAdLMmgIR0B6gX1CgK4QdX2UKGgGR8BCAIF/x2B8aAdLMmgIR0B6hO8yvcJudX2UKGgGR8A6K1TisGPgaAdLMmgIR0B6iG5z5oGqdX2UKGgGR8BBuvyCnP3SaAdLMmgIR0B6i+CaqjrSdX2UKGgGR8AtXQeFL39KaAdLMmgIR0B6j5EhJRO2dX2UKGgGR8BAhlpGnXNDaAdLMmgIR0B6kwXqJMxodX2UKGgGR8Aoj93r2QGOaAdLMmgIR0B6lnrhR64UdX2UKGgGR8A6EHcDbJwLaAdLMmgIR0B6mfblA/s3dX2UKGgGR7/MXN1QqI8AaAdLBGgIR0B6mkpRXOnmdX2UKGgGR8AwWnhsImgKaAdLMmgIR0B6ndC9h7VsdX2UKGgGR8Ac0EhaC+URaAdLMmgIR0B6oU+s5n14dX2UKGgGR8AucLKFIuoQaAdLMmgIR0B6pN5C4SYgdX2UKGgGR8A6t2NvOyE+aAdLMmgIR0B6qGZF5OafdX2UKGgGR8BBuwCbMHKPaAdLMmgIR0B6q96Z6UqydX2UKGgGR8BBAOU+s5n2aAdLMmgIR0B6r15VwPy1dX2UKGgGR8BALEqDsdDIaAdLMmgIR0B6sthw2l2vdX2UKGgGR8AoT+2mYSg5aAdLMmgIR0B6tmRwIdELdX2UKGgGR8A1UhFVktmMaAdLMmgIR0B6udg6U7jldX2UKGgGR8A4rYNRWLgoaAdLMmgIR0B6vUsjFAE/dX2UKGgGR8BClAkC3gDSaAdLMmgIR0B6wL7O3UhFdX2UKGgGR8AumAEMb3oLaAdLMmgIR0B6xEjJMg2ZdX2UKGgGR8A9m/7BO58SaAdLMmgIR0B6x7o0Q9RrdX2UKGgGR8A3RJSiudPMaAdLMmgIR0B6y0cCHRCydX2UKGgGR8BBb6OHWSU1aAdLMmgIR0B6zsK5TZQIdX2UKGgGR8A/QLORkmQbaAdLMmgIR0B60lUbT+efdX2UKGgGR8A7fOwxFiKBaAdLMmgIR0B61c5S3soldX2UKGgGR8A9Fttygf2caAdLMmgIR0B62UsTWXkYdX2UKGgGR8A/GDtgKF7EaAdLMmgIR0B63NHQQcxTdX2UKGgGR8A9ltNzr/sFaAdLMmgIR0B64F/b0voNdX2UKGgGR7+jakAPuognaAdLAWgIR0B64HMvAXVLdX2UKGgGR8A8kD1oQFs6aAdLMmgIR0B64+owVTJhdX2UKGgGR8A1bkbPyCnQaAdLMmgIR0B651t4zJp4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiIiJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYllLg=="}, "_n_updates": 99900, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVkgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAABAQGUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgKKYGUfZQoaA1oE2gWSwOFlGgYaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlGgedJRSlGghaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGgraBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlGgwaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGg1jAUtMTAuMJRoN4wEMTAuMJRoOU51YowLb2JzZXJ2YXRpb26UaAopgZR9lChoDWgTaBZLBoWUaBhoGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBNLBoWUaB50lFKUaCFoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaCtoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBNLBoWUaB50lFKUaDBoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVidWgWTmgNTmg5TnViLg==", "spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhwAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sHhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBwAAAAAAAAABAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSweFlGgWdJRSlIwEaGlnaJRoEyiWHAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSweFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBwAAAAAAAAABAQEBAQEBlGgdSweFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEIfNSY3y+wnnQZ4bfcXqnT6MA2luY5SKEPeUvqlv2sy/BMgAVjLONEZ1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihDXq+JBX+bWLBFweBD86WE+SwBoEyiWEAAAAAAAAACftYmsPljVNpEixjk0BbKXlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYksEhZRoFnSUUpRLBCl0lGKGlGKFlFKUdWIu", "dtype": "float32", "_shape": [7], "low": "[-1. -1. -1. -1. -1. -1. -1.]", "bounded_below": "[ True True True True True True True]", "high": "[1. 1. 1. 1. 1. 1. 1.]", "bounded_above": "[ True True True True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__firstlineno__": 15, "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\nHindsight Experience Replay (HER) buffer.\nPaper: https://arxiv.org/abs/1707.01495\n\nReplay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n.. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n:param buffer_size: Max number of element in the buffer\n:param observation_space: Observation space\n:param action_space: Action space\n:param env: The training environment\n:param device: PyTorch device\n:param n_envs: Number of parallel environments\n:param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n:param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n:param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n:param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n:param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n", "__init__": "<function HerReplayBuffer.__init__ at 0x12b4a5da0>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x12b4a5e40>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x12b4a5ee0>", "set_env": "<function HerReplayBuffer.set_env at 0x12b4a5f80>", "add": "<function HerReplayBuffer.add at 0x12b4a60c0>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x12b4a6160>", "sample": "<function HerReplayBuffer.sample at 0x12b4a6200>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x12b4a62a0>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x12b4a6340>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x12b4a63e0>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x12b4a6480>", "__static_attributes__": ["_current_ep_start", "copy_info_dict", "env", "ep_length", "ep_start", "goal_selection_strategy", "her_ratio", "infos", "n_sampled_goal"], "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12b4bdec0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyY+AZUAWwEAAAAAAAAAAFQBIgBVADUBAAAAAAAANQEAAAAAAAAkAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMii9Vc2Vycy9zdGV2YW4vRG9jdW1lbnRzL0NlbnRyYWxlIEx5b24vM0EvTWFjaGluZSBMZWFybmluZy9oYW5kcy1vbi1ybC8udmVudi9saWIvcHl0aG9uMy4xMy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEtiQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyKL1VzZXJzL3N0ZXZhbi9Eb2N1bWVudHMvQ2VudHJhbGUgTHlvbi8zQS9NYWNoaW5lIExlYXJuaW5nL2hhbmRzLW9uLXJsLy52ZW52L2xpYi9weXRob24zLjEzL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwg+AZUAVAEkAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4ZDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "macOS-15.3-arm64-arm-64bit-Mach-O Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:23 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T8122", "Python": "3.13.1", "Stable-Baselines3": "2.5.0", "PyTorch": "2.6.0", "GPU Enabled": "False", "Numpy": "2.2.3", "Cloudpickle": "3.1.1", "Gymnasium": "1.0.0", "OpenAI Gym": "0.26.2"}}
ddpg-panda-reach-100k.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f766ea19024b881fb3ff4eb5d3c9e28a334c5b16815904943bba229b6eadb360
3
+ size 4137669
ddpg-panda-reach-100k/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.5.0
ddpg-panda-reach-100k/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d179d8a5a07434a1e26e94b7b047ea7383a57de26d873eaf19352e5376cb4fcb
3
+ size 1025952
ddpg-panda-reach-100k/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83b31020ed5b8acb60f55818c636ecb40419ad7e801471eb2c96b12f6c7a305e
3
+ size 1033888
ddpg-panda-reach-100k/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__firstlineno__": 314,
7
+ "__doc__": "\nPolicy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n:param observation_space: Observation space\n:param action_space: Action space\n:param lr_schedule: Learning rate schedule (could be constant)\n:param net_arch: The specification of the policy and value networks.\n:param activation_fn: Activation function\n:param features_extractor_class: Features extractor to use.\n:param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n:param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n:param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n:param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n:param n_critics: Number of critic networks to create.\n:param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n",
8
+ "__init__": "<function MultiInputPolicy.__init__ at 0x12b4a5080>",
9
+ "__static_attributes__": [],
10
+ "__abstractmethods__": "frozenset()",
11
+ "_abc_impl": "<_abc._abc_data object at 0x12b4a2b40>"
12
+ },
13
+ "verbose": 1,
14
+ "policy_kwargs": {
15
+ "n_critics": 1
16
+ },
17
+ "num_timesteps": 100000,
18
+ "_total_timesteps": 100000,
19
+ "_num_timesteps_at_start": 0,
20
+ "seed": null,
21
+ "action_noise": null,
22
+ "start_time": 1739907821907515000,
23
+ "learning_rate": 0.001,
24
+ "tensorboard_log": "runs/1i1l8oe5",
25
+ "_last_obs": {
26
+ ":type:": "<class 'collections.OrderedDict'>",
27
+ ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAACwOFz4nbGs+Vw8oP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAALA4XPidsaz5XDyg/SUq+vD2tAL88hck+lGgOSwFLBoaUaBJ0lFKUdS4=",
28
+ "achieved_goal": "[[0.147515 0.22990476 0.65648407]]",
29
+ "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]",
30
+ "observation": "[[ 0.147515 0.22990476 0.65648407 -0.02322878 -0.5026434 0.39359462]]"
31
+ },
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'collections.OrderedDict'>",
38
+ ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHgDHj7U9Wc+YCUlP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAAeAMePtT1Zz5gJSU/XuAzvqAJAD8UBz89lGgOSwFLBoaUaBJ0lFKUdS4=",
39
+ "achieved_goal": "[[0.1543101 0.2265237 0.64510155]]",
40
+ "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]",
41
+ "observation": "[[ 0.1543101 0.2265237 0.64510155 -0.17566058 0.50014687 0.04663761]]"
42
+ },
43
+ "_episode_num": 3064,
44
+ "use_sde": false,
45
+ "sde_sample_freq": -1,
46
+ "_current_progress_remaining": 0.0,
47
+ "_stats_window_size": 100,
48
+ "ep_info_buffer": {
49
+ ":type:": "<class 'collections.deque'>",
50
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEE20VrRBu6MAWyUSzKMAXSUR0B5ozE0iyIIdX2UKGgGR8A9k62OQyRCaAdLMmgIR0B5pqnfl6qsdX2UKGgGR7+hhc7hegL7aAdLAWgIR0B5prv+fh/BdX2UKGgGR7+l3+uNgjQiaAdLAWgIR0B5ps3T/hl2dX2UKGgGR8AzAI/Z/Tb4aAdLMmgIR0B5qlhrnDBNdX2UKGgGR8AyBTfBN21VaAdLMmgIR0B5rehTOxB3dX2UKGgGR8AtFO0svqTsaAdLMmgIR0B5sWp97WupdX2UKGgGR8BChNTLns9kaAdLMmgIR0B5tOdoWYWtdX2UKGgGR8BBGsiSq2jPaAdLMmgIR0B5uGws5GSZdX2UKGgGR8BCQ3gUDdP+aAdLMmgIR0B5u+U/wAlwdX2UKGgGR8BB4Ire67NCaAdLMmgIR0B5v1sdkrf+dX2UKGgGR7+nj2i+L3sYaAdLAWgIR0B5v24nWrfcdX2UKGgGR8A5sKKHfuTiaAdLMmgIR0B5wwqTbFjvdX2UKGgGR8A5AGAkLQXzaAdLMmgIR0B5xoV2zOX3dX2UKGgGR8BDgyr5qM3qaAdLMmgIR0B5yf/2kBS2dX2UKGgGR8A7Rbuc+aBqaAdLMmgIR0B5zXLlmvnsdX2UKGgGR8A+hz5XU6PsaAdLMmgIR0B50QBDG96DdX2UKGgGR8BCJNjslb/waAdLMmgIR0B51HL3bmEHdX2UKGgGR8A6HEnssxwiaAdLMmgIR0B51/YODrZ8dX2UKGgGR8A+hDOTq0MPaAdLMmgIR0B523qxC6YmdX2UKGgGR8A9pgbZOBUaaAdLMmgIR0B53wd92HLzdX2UKGgGR8AqU1O0svqUaAdLMmgIR0B54pyHVPN3dX2UKGgGR8A0L/Z/Tb35aAdLMmgIR0B55jBCUorndX2UKGgGR8BAkTwlSjxkaAdLMmgIR0B56aMHbAUMdX2UKGgGR8BEnuJcgQpXaAdLMmgIR0B57TVEuxr0dX2UKGgGR8BBmtIkJKJ3aAdLMmgIR0B58K/9Hc1wdX2UKGgGR8BAuCkfs/puaAdLMmgIR0B59C4kNWludX2UKGgGR8A/IG3WnTAnaAdLMmgIR0B596iM5wOwdX2UKGgGR8Awh+BYmsvJaAdLMmgIR0B5+yThYNiIdX2UKGgGR8BCIBnBciW3aAdLMmgIR0B5/pTwUg0TdX2UKGgGR8A+OOWSlnAZaAdLMmgIR0B6Aha6jFhodX2UKGgGR8AqwzZ6D5CXaAdLMmgIR0B6BbIxQBPsdX2UKGgGR8A4o4YaYNRWaAdLMmgIR0B6CVD9fkWAdX2UKGgGR8A9hRhMJx//aAdLMmgIR0B6DM5Ke05VdX2UKGgGR8A1Cmvnr6ciaAdLMmgIR0B6EDu3MINWdX2UKGgGR8BAxVOsT37DaAdLMmgIR0B6E69Zid8RdX2UKGgGR8A63zQeFL39aAdLMmgIR0B6F0dxQzk7dX2UKGgGR8AyZ1SflIVeaAdLMmgIR0B6GsAIY3vQdX2UKGgGR8Ay0iosI3R5aAdLMmgIR0B6Hjs1KoQ4dX2UKGgGR8BDZnAAQxvfaAdLMmgIR0B6IbO/tY0VdX2UKGgGR8A3yYcNpdrwaAdLMmgIR0B6JUlv60pmdX2UKGgGR8A7hrUb1h9caAdLMmgIR0B6KP1DjR2KdX2UKGgGR8BEDC83++/QaAdLMmgIR0B6LISqU/wBdX2UKGgGR8Aw1hfjS5RTaAdLMmgIR0B6L/NX5nDjdX2UKGgGR8A/fmPYFqzraAdLMmgIR0B6M4aIeo1ldX2UKGgGR8BB/KsMiKR/aAdLMmgIR0B6Nv0HyEtedX2UKGgGR8A+zIa99MK1aAdLMmgIR0B6OnwWnCO4dX2UKGgGR8A+y+CbtqpMaAdLMmgIR0B6PgQK8cuKdX2UKGgGR8ASYX2ugYgraAdLMmgIR0B6QZ3wCr93dX2UKGgGR8ApFWEK3NLUaAdLMmgIR0B6RR0Rvm5ldX2UKGgGR8BFHqIacZtOaAdLMmgIR0B6SJQWN3nqdX2UKGgGR8A2IbS7Xg+AaAdLMmgIR0B6TCI2wV0tdX2UKGgGR8A05z9jwx33aAdLMmgIR0B6T8lw97ngdX2UKGgGR8AhgG7BfrrxaAdLMmgIR0B6U1IwudwvdX2UKGgGR8A9A4oJAt4BaAdLMmgIR0B6VtPUKArhdX2UKGgGR7+iouPFNtZWaAdLAWgIR0B6VuetjkMkdX2UKGgGR8A6V6mfoRqXaAdLMmgIR0B6Wng9/z8QdX2UKGgGR7+iCxu89Oh1aAdLAWgIR0B6WoskIHC5dX2UKGgGR8AyqSs8xKxtaAdLMmgIR0B6XiI/JNj9dX2UKGgGR8A5v2Bas6q9aAdLMmgIR0B6YZY1YQrddX2UKGgGR8AxRaV2Rq46aAdLMmgIR0B6ZSO3lS0jdX2UKGgGR8BAXgH/tICmaAdLMmgIR0B6aLBBRhttdX2UKGgGR8BA2rtVrAP/aAdLMmgIR0B6bDr0J4SpdX2UKGgGR8AheC7K7qY7aAdLMmgIR0B6b7f1pTMrdX2UKGgGR8AyethNM496aAdLMmgIR0B6c1p7CzkZdX2UKGgGR8AhthsImgJ1aAdLMmgIR0B6dt2r4nF6dX2UKGgGR8AkBKdQO4G2aAdLMmgIR0B6em5AhStOdX2UKGgGR8BAHgaWHDaXaAdLMmgIR0B6fec5Ke05dX2UKGgGR8AxtHEdeY2LaAdLMmgIR0B6gX1CgK4QdX2UKGgGR8BCAIF/x2B8aAdLMmgIR0B6hO8yvcJudX2UKGgGR8A6K1TisGPgaAdLMmgIR0B6iG5z5oGqdX2UKGgGR8BBuvyCnP3SaAdLMmgIR0B6i+CaqjrSdX2UKGgGR8AtXQeFL39KaAdLMmgIR0B6j5EhJRO2dX2UKGgGR8BAhlpGnXNDaAdLMmgIR0B6kwXqJMxodX2UKGgGR8Aoj93r2QGOaAdLMmgIR0B6lnrhR64UdX2UKGgGR8A6EHcDbJwLaAdLMmgIR0B6mfblA/s3dX2UKGgGR7/MXN1QqI8AaAdLBGgIR0B6mkpRXOnmdX2UKGgGR8AwWnhsImgKaAdLMmgIR0B6ndC9h7VsdX2UKGgGR8Ac0EhaC+URaAdLMmgIR0B6oU+s5n14dX2UKGgGR8AucLKFIuoQaAdLMmgIR0B6pN5C4SYgdX2UKGgGR8A6t2NvOyE+aAdLMmgIR0B6qGZF5OafdX2UKGgGR8BBuwCbMHKPaAdLMmgIR0B6q96Z6UqydX2UKGgGR8BBAOU+s5n2aAdLMmgIR0B6r15VwPy1dX2UKGgGR8BALEqDsdDIaAdLMmgIR0B6sthw2l2vdX2UKGgGR8AoT+2mYSg5aAdLMmgIR0B6tmRwIdELdX2UKGgGR8A1UhFVktmMaAdLMmgIR0B6udg6U7jldX2UKGgGR8A4rYNRWLgoaAdLMmgIR0B6vUsjFAE/dX2UKGgGR8BClAkC3gDSaAdLMmgIR0B6wL7O3UhFdX2UKGgGR8AumAEMb3oLaAdLMmgIR0B6xEjJMg2ZdX2UKGgGR8A9m/7BO58SaAdLMmgIR0B6x7o0Q9RrdX2UKGgGR8A3RJSiudPMaAdLMmgIR0B6y0cCHRCydX2UKGgGR8BBb6OHWSU1aAdLMmgIR0B6zsK5TZQIdX2UKGgGR8A/QLORkmQbaAdLMmgIR0B60lUbT+efdX2UKGgGR8A7fOwxFiKBaAdLMmgIR0B61c5S3soldX2UKGgGR8A9Fttygf2caAdLMmgIR0B62UsTWXkYdX2UKGgGR8A/GDtgKF7EaAdLMmgIR0B63NHQQcxTdX2UKGgGR8A9ltNzr/sFaAdLMmgIR0B64F/b0voNdX2UKGgGR7+jakAPuognaAdLAWgIR0B64HMvAXVLdX2UKGgGR8A8kD1oQFs6aAdLMmgIR0B64+owVTJhdX2UKGgGR8A1bkbPyCnQaAdLMmgIR0B651t4zJp4dWUu"
51
+ },
52
+ "ep_success_buffer": {
53
+ ":type:": "<class 'collections.deque'>",
54
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiIiJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYllLg=="
55
+ },
56
+ "_n_updates": 99900,
57
+ "observation_space": {
58
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
59
+ ":serialized:": "gAWVkgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAABAQGUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgKKYGUfZQoaA1oE2gWSwOFlGgYaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlGgedJRSlGghaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGgraBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlGgwaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGg1jAUtMTAuMJRoN4wEMTAuMJRoOU51YowLb2JzZXJ2YXRpb26UaAopgZR9lChoDWgTaBZLBoWUaBhoGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBNLBoWUaB50lFKUaCFoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaCtoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBNLBoWUaB50lFKUaDBoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVidWgWTmgNTmg5TnViLg==",
60
+ "spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}",
61
+ "_shape": null,
62
+ "dtype": null,
63
+ "_np_random": null
64
+ },
65
+ "action_space": {
66
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
67
+ ":serialized:": "gAWVZwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhwAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sHhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBwAAAAAAAAABAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSweFlGgWdJRSlIwEaGlnaJRoEyiWHAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSweFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBwAAAAAAAAABAQEBAQEBlGgdSweFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEIfNSY3y+wnnQZ4bfcXqnT6MA2luY5SKEPeUvqlv2sy/BMgAVjLONEZ1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihDXq+JBX+bWLBFweBD86WE+SwBoEyiWEAAAAAAAAACftYmsPljVNpEixjk0BbKXlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYksEhZRoFnSUUpRLBCl0lGKGlGKFlFKUdWIu",
68
+ "dtype": "float32",
69
+ "_shape": [
70
+ 7
71
+ ],
72
+ "low": "[-1. -1. -1. -1. -1. -1. -1.]",
73
+ "bounded_below": "[ True True True True True True True]",
74
+ "high": "[1. 1. 1. 1. 1. 1. 1.]",
75
+ "bounded_above": "[ True True True True True True True]",
76
+ "low_repr": "-1.0",
77
+ "high_repr": "1.0",
78
+ "_np_random": "Generator(PCG64)"
79
+ },
80
+ "n_envs": 1,
81
+ "buffer_size": 1000000,
82
+ "batch_size": 256,
83
+ "learning_starts": 100,
84
+ "tau": 0.005,
85
+ "gamma": 0.99,
86
+ "gradient_steps": 1,
87
+ "optimize_memory_usage": false,
88
+ "replay_buffer_class": {
89
+ ":type:": "<class 'abc.ABCMeta'>",
90
+ ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
91
+ "__module__": "stable_baselines3.her.her_replay_buffer",
92
+ "__firstlineno__": 15,
93
+ "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
94
+ "__doc__": "\nHindsight Experience Replay (HER) buffer.\nPaper: https://arxiv.org/abs/1707.01495\n\nReplay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n.. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n:param buffer_size: Max number of element in the buffer\n:param observation_space: Observation space\n:param action_space: Action space\n:param env: The training environment\n:param device: PyTorch device\n:param n_envs: Number of parallel environments\n:param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n:param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n:param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n:param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n:param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n",
95
+ "__init__": "<function HerReplayBuffer.__init__ at 0x12b4a5da0>",
96
+ "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x12b4a5e40>",
97
+ "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x12b4a5ee0>",
98
+ "set_env": "<function HerReplayBuffer.set_env at 0x12b4a5f80>",
99
+ "add": "<function HerReplayBuffer.add at 0x12b4a60c0>",
100
+ "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x12b4a6160>",
101
+ "sample": "<function HerReplayBuffer.sample at 0x12b4a6200>",
102
+ "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x12b4a62a0>",
103
+ "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x12b4a6340>",
104
+ "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x12b4a63e0>",
105
+ "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x12b4a6480>",
106
+ "__static_attributes__": [
107
+ "_current_ep_start",
108
+ "copy_info_dict",
109
+ "env",
110
+ "ep_length",
111
+ "ep_start",
112
+ "goal_selection_strategy",
113
+ "her_ratio",
114
+ "infos",
115
+ "n_sampled_goal"
116
+ ],
117
+ "__abstractmethods__": "frozenset()",
118
+ "_abc_impl": "<_abc._abc_data object at 0x12b4bdec0>"
119
+ },
120
+ "replay_buffer_kwargs": {},
121
+ "train_freq": {
122
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
123
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
124
+ },
125
+ "use_sde_at_warmup": false,
126
+ "policy_delay": 1,
127
+ "target_noise_clip": 0.0,
128
+ "target_policy_noise": 0.1,
129
+ "lr_schedule": {
130
+ ":type:": "<class 'function'>",
131
+ ":serialized:": "gAWVigQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyY+AZUAWwEAAAAAAAAAAFQBIgBVADUBAAAAAAAANQEAAAAAAAAkAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMii9Vc2Vycy9zdGV2YW4vRG9jdW1lbnRzL0NlbnRyYWxlIEx5b24vM0EvTWFjaGluZSBMZWFybmluZy9oYW5kcy1vbi1ybC8udmVudi9saWIvcHl0aG9uMy4xMy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEtiQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyKL1VzZXJzL3N0ZXZhbi9Eb2N1bWVudHMvQ2VudHJhbGUgTHlvbi8zQS9NYWNoaW5lIExlYXJuaW5nL2hhbmRzLW9uLXJsLy52ZW52L2xpYi9weXRob24zLjEzL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwg+AZUAVAEkAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4ZDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"
132
+ },
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-panda-reach-100k/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b0c4c329a68c9cce9c2f5e0ca390a0ab5349df9facd4bbebd2af72c01c2afde
3
+ size 2058638
ddpg-panda-reach-100k/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
3
+ size 864
ddpg-panda-reach-100k/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-15.3-arm64-arm-64bit-Mach-O Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:23 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T8122
2
+ - Python: 3.13.1
3
+ - Stable-Baselines3: 2.5.0
4
+ - PyTorch: 2.6.0
5
+ - GPU Enabled: False
6
+ - Numpy: 2.2.3
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 1.0.0
9
+ - OpenAI Gym: 0.26.2
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -21.0586356125772, "std_reward": 6.597103403222232, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-18T20:50:52.874923"}