Upload DDPG Panda Reach model for 100 000 timesteps
Browse files- README.md +37 -0
- config.json +1 -0
- ddpg-panda-reach-100k.zip +3 -0
- ddpg-panda-reach-100k/_stable_baselines3_version +1 -0
- ddpg-panda-reach-100k/actor.optimizer.pth +3 -0
- ddpg-panda-reach-100k/critic.optimizer.pth +3 -0
- ddpg-panda-reach-100k/data +137 -0
- ddpg-panda-reach-100k/policy.pth +3 -0
- ddpg-panda-reach-100k/pytorch_variables.pth +3 -0
- ddpg-panda-reach-100k/system_info.txt +9 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachJointsDense-v3
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: DDPG
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachJointsDense-v3
|
| 16 |
+
type: PandaReachJointsDense-v3
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -21.06 +/- 6.60
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **DDPG** Agent playing **PandaReachJointsDense-v3**
|
| 25 |
+
This is a trained model of a **DDPG** agent playing **PandaReachJointsDense-v3**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__firstlineno__": 314, "__doc__": "\nPolicy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n:param observation_space: Observation space\n:param action_space: Action space\n:param lr_schedule: Learning rate schedule (could be constant)\n:param net_arch: The specification of the policy and value networks.\n:param activation_fn: Activation function\n:param features_extractor_class: Features extractor to use.\n:param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n:param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n:param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n:param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n:param n_critics: Number of critic networks to create.\n:param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n", "__init__": "<function MultiInputPolicy.__init__ at 0x12b4a5080>", "__static_attributes__": [], "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12b4a2b40>"}, "verbose": 1, "policy_kwargs": {"n_critics": 1}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739907821907515000, "learning_rate": 0.001, "tensorboard_log": "runs/1i1l8oe5", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAACwOFz4nbGs+Vw8oP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAALA4XPidsaz5XDyg/SUq+vD2tAL88hck+lGgOSwFLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[0.147515 0.22990476 0.65648407]]", "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]", "observation": "[[ 0.147515 0.22990476 0.65648407 -0.02322878 -0.5026434 0.39359462]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHgDHj7U9Wc+YCUlP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAAeAMePtT1Zz5gJSU/XuAzvqAJAD8UBz89lGgOSwFLBoaUaBJ0lFKUdS4=", "achieved_goal": "[[0.1543101 0.2265237 0.64510155]]", "desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]", "observation": "[[ 0.1543101 0.2265237 0.64510155 -0.17566058 0.50014687 0.04663761]]"}, "_episode_num": 3064, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEE20VrRBu6MAWyUSzKMAXSUR0B5ozE0iyIIdX2UKGgGR8A9k62OQyRCaAdLMmgIR0B5pqnfl6qsdX2UKGgGR7+hhc7hegL7aAdLAWgIR0B5prv+fh/BdX2UKGgGR7+l3+uNgjQiaAdLAWgIR0B5ps3T/hl2dX2UKGgGR8AzAI/Z/Tb4aAdLMmgIR0B5qlhrnDBNdX2UKGgGR8AyBTfBN21VaAdLMmgIR0B5rehTOxB3dX2UKGgGR8AtFO0svqTsaAdLMmgIR0B5sWp97WupdX2UKGgGR8BChNTLns9kaAdLMmgIR0B5tOdoWYWtdX2UKGgGR8BBGsiSq2jPaAdLMmgIR0B5uGws5GSZdX2UKGgGR8BCQ3gUDdP+aAdLMmgIR0B5u+U/wAlwdX2UKGgGR8BB4Ire67NCaAdLMmgIR0B5v1sdkrf+dX2UKGgGR7+nj2i+L3sYaAdLAWgIR0B5v24nWrfcdX2UKGgGR8A5sKKHfuTiaAdLMmgIR0B5wwqTbFjvdX2UKGgGR8A5AGAkLQXzaAdLMmgIR0B5xoV2zOX3dX2UKGgGR8BDgyr5qM3qaAdLMmgIR0B5yf/2kBS2dX2UKGgGR8A7Rbuc+aBqaAdLMmgIR0B5zXLlmvnsdX2UKGgGR8A+hz5XU6PsaAdLMmgIR0B50QBDG96DdX2UKGgGR8BCJNjslb/waAdLMmgIR0B51HL3bmEHdX2UKGgGR8A6HEnssxwiaAdLMmgIR0B51/YODrZ8dX2UKGgGR8A+hDOTq0MPaAdLMmgIR0B523qxC6YmdX2UKGgGR8A9pgbZOBUaaAdLMmgIR0B53wd92HLzdX2UKGgGR8AqU1O0svqUaAdLMmgIR0B54pyHVPN3dX2UKGgGR8A0L/Z/Tb35aAdLMmgIR0B55jBCUorndX2UKGgGR8BAkTwlSjxkaAdLMmgIR0B56aMHbAUMdX2UKGgGR8BEnuJcgQpXaAdLMmgIR0B57TVEuxr0dX2UKGgGR8BBmtIkJKJ3aAdLMmgIR0B58K/9Hc1wdX2UKGgGR8BAuCkfs/puaAdLMmgIR0B59C4kNWludX2UKGgGR8A/IG3WnTAnaAdLMmgIR0B596iM5wOwdX2UKGgGR8Awh+BYmsvJaAdLMmgIR0B5+yThYNiIdX2UKGgGR8BCIBnBciW3aAdLMmgIR0B5/pTwUg0TdX2UKGgGR8A+OOWSlnAZaAdLMmgIR0B6Aha6jFhodX2UKGgGR8AqwzZ6D5CXaAdLMmgIR0B6BbIxQBPsdX2UKGgGR8A4o4YaYNRWaAdLMmgIR0B6CVD9fkWAdX2UKGgGR8A9hRhMJx//aAdLMmgIR0B6DM5Ke05VdX2UKGgGR8A1Cmvnr6ciaAdLMmgIR0B6EDu3MINWdX2UKGgGR8BAxVOsT37DaAdLMmgIR0B6E69Zid8RdX2UKGgGR8A63zQeFL39aAdLMmgIR0B6F0dxQzk7dX2UKGgGR8AyZ1SflIVeaAdLMmgIR0B6GsAIY3vQdX2UKGgGR8Ay0iosI3R5aAdLMmgIR0B6Hjs1KoQ4dX2UKGgGR8BDZnAAQxvfaAdLMmgIR0B6IbO/tY0VdX2UKGgGR8A3yYcNpdrwaAdLMmgIR0B6JUlv60pmdX2UKGgGR8A7hrUb1h9caAdLMmgIR0B6KP1DjR2KdX2UKGgGR8BEDC83++/QaAdLMmgIR0B6LISqU/wBdX2UKGgGR8Aw1hfjS5RTaAdLMmgIR0B6L/NX5nDjdX2UKGgGR8A/fmPYFqzraAdLMmgIR0B6M4aIeo1ldX2UKGgGR8BB/KsMiKR/aAdLMmgIR0B6Nv0HyEtedX2UKGgGR8A+zIa99MK1aAdLMmgIR0B6OnwWnCO4dX2UKGgGR8A+y+CbtqpMaAdLMmgIR0B6PgQK8cuKdX2UKGgGR8ASYX2ugYgraAdLMmgIR0B6QZ3wCr93dX2UKGgGR8ApFWEK3NLUaAdLMmgIR0B6RR0Rvm5ldX2UKGgGR8BFHqIacZtOaAdLMmgIR0B6SJQWN3nqdX2UKGgGR8A2IbS7Xg+AaAdLMmgIR0B6TCI2wV0tdX2UKGgGR8A05z9jwx33aAdLMmgIR0B6T8lw97ngdX2UKGgGR8AhgG7BfrrxaAdLMmgIR0B6U1IwudwvdX2UKGgGR8A9A4oJAt4BaAdLMmgIR0B6VtPUKArhdX2UKGgGR7+iouPFNtZWaAdLAWgIR0B6VuetjkMkdX2UKGgGR8A6V6mfoRqXaAdLMmgIR0B6Wng9/z8QdX2UKGgGR7+iCxu89Oh1aAdLAWgIR0B6WoskIHC5dX2UKGgGR8AyqSs8xKxtaAdLMmgIR0B6XiI/JNj9dX2UKGgGR8A5v2Bas6q9aAdLMmgIR0B6YZY1YQrddX2UKGgGR8AxRaV2Rq46aAdLMmgIR0B6ZSO3lS0jdX2UKGgGR8BAXgH/tICmaAdLMmgIR0B6aLBBRhttdX2UKGgGR8BA2rtVrAP/aAdLMmgIR0B6bDr0J4SpdX2UKGgGR8AheC7K7qY7aAdLMmgIR0B6b7f1pTMrdX2UKGgGR8AyethNM496aAdLMmgIR0B6c1p7CzkZdX2UKGgGR8AhthsImgJ1aAdLMmgIR0B6dt2r4nF6dX2UKGgGR8AkBKdQO4G2aAdLMmgIR0B6em5AhStOdX2UKGgGR8BAHgaWHDaXaAdLMmgIR0B6fec5Ke05dX2UKGgGR8AxtHEdeY2LaAdLMmgIR0B6gX1CgK4QdX2UKGgGR8BCAIF/x2B8aAdLMmgIR0B6hO8yvcJudX2UKGgGR8A6K1TisGPgaAdLMmgIR0B6iG5z5oGqdX2UKGgGR8BBuvyCnP3SaAdLMmgIR0B6i+CaqjrSdX2UKGgGR8AtXQeFL39KaAdLMmgIR0B6j5EhJRO2dX2UKGgGR8BAhlpGnXNDaAdLMmgIR0B6kwXqJMxodX2UKGgGR8Aoj93r2QGOaAdLMmgIR0B6lnrhR64UdX2UKGgGR8A6EHcDbJwLaAdLMmgIR0B6mfblA/s3dX2UKGgGR7/MXN1QqI8AaAdLBGgIR0B6mkpRXOnmdX2UKGgGR8AwWnhsImgKaAdLMmgIR0B6ndC9h7VsdX2UKGgGR8Ac0EhaC+URaAdLMmgIR0B6oU+s5n14dX2UKGgGR8AucLKFIuoQaAdLMmgIR0B6pN5C4SYgdX2UKGgGR8A6t2NvOyE+aAdLMmgIR0B6qGZF5OafdX2UKGgGR8BBuwCbMHKPaAdLMmgIR0B6q96Z6UqydX2UKGgGR8BBAOU+s5n2aAdLMmgIR0B6r15VwPy1dX2UKGgGR8BALEqDsdDIaAdLMmgIR0B6sthw2l2vdX2UKGgGR8AoT+2mYSg5aAdLMmgIR0B6tmRwIdELdX2UKGgGR8A1UhFVktmMaAdLMmgIR0B6udg6U7jldX2UKGgGR8A4rYNRWLgoaAdLMmgIR0B6vUsjFAE/dX2UKGgGR8BClAkC3gDSaAdLMmgIR0B6wL7O3UhFdX2UKGgGR8AumAEMb3oLaAdLMmgIR0B6xEjJMg2ZdX2UKGgGR8A9m/7BO58SaAdLMmgIR0B6x7o0Q9RrdX2UKGgGR8A3RJSiudPMaAdLMmgIR0B6y0cCHRCydX2UKGgGR8BBb6OHWSU1aAdLMmgIR0B6zsK5TZQIdX2UKGgGR8A/QLORkmQbaAdLMmgIR0B60lUbT+efdX2UKGgGR8A7fOwxFiKBaAdLMmgIR0B61c5S3soldX2UKGgGR8A9Fttygf2caAdLMmgIR0B62UsTWXkYdX2UKGgGR8A/GDtgKF7EaAdLMmgIR0B63NHQQcxTdX2UKGgGR8A9ltNzr/sFaAdLMmgIR0B64F/b0voNdX2UKGgGR7+jakAPuognaAdLAWgIR0B64HMvAXVLdX2UKGgGR8A8kD1oQFs6aAdLMmgIR0B64+owVTJhdX2UKGgGR8A1bkbPyCnQaAdLMmgIR0B651t4zJp4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiIiJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYllLg=="}, "_n_updates": 99900, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVkgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAABAQGUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgKKYGUfZQoaA1oE2gWSwOFlGgYaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlGgedJRSlGghaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGgraBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlGgwaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGg1jAUtMTAuMJRoN4wEMTAuMJRoOU51YowLb2JzZXJ2YXRpb26UaAopgZR9lChoDWgTaBZLBoWUaBhoGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBNLBoWUaB50lFKUaCFoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaCtoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBNLBoWUaB50lFKUaDBoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVidWgWTmgNTmg5TnViLg==", "spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhwAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sHhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBwAAAAAAAAABAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSweFlGgWdJRSlIwEaGlnaJRoEyiWHAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSweFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBwAAAAAAAAABAQEBAQEBlGgdSweFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEIfNSY3y+wnnQZ4bfcXqnT6MA2luY5SKEPeUvqlv2sy/BMgAVjLONEZ1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihDXq+JBX+bWLBFweBD86WE+SwBoEyiWEAAAAAAAAACftYmsPljVNpEixjk0BbKXlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYksEhZRoFnSUUpRLBCl0lGKGlGKFlFKUdWIu", "dtype": "float32", "_shape": [7], "low": "[-1. -1. -1. -1. -1. -1. -1.]", "bounded_below": "[ True True True True True True True]", "high": "[1. 1. 1. 1. 1. 1. 1.]", "bounded_above": "[ True True True True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__firstlineno__": 15, "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\nHindsight Experience Replay (HER) buffer.\nPaper: https://arxiv.org/abs/1707.01495\n\nReplay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n.. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n:param buffer_size: Max number of element in the buffer\n:param observation_space: Observation space\n:param action_space: Action space\n:param env: The training environment\n:param device: PyTorch device\n:param n_envs: Number of parallel environments\n:param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n:param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n:param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n:param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n:param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n", "__init__": "<function HerReplayBuffer.__init__ at 0x12b4a5da0>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x12b4a5e40>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x12b4a5ee0>", "set_env": "<function HerReplayBuffer.set_env at 0x12b4a5f80>", "add": "<function HerReplayBuffer.add at 0x12b4a60c0>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x12b4a6160>", "sample": "<function HerReplayBuffer.sample at 0x12b4a6200>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x12b4a62a0>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x12b4a6340>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x12b4a63e0>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x12b4a6480>", "__static_attributes__": ["_current_ep_start", "copy_info_dict", "env", "ep_length", "ep_start", "goal_selection_strategy", "her_ratio", "infos", "n_sampled_goal"], "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12b4bdec0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyY+AZUAWwEAAAAAAAAAAFQBIgBVADUBAAAAAAAANQEAAAAAAAAkAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMii9Vc2Vycy9zdGV2YW4vRG9jdW1lbnRzL0NlbnRyYWxlIEx5b24vM0EvTWFjaGluZSBMZWFybmluZy9oYW5kcy1vbi1ybC8udmVudi9saWIvcHl0aG9uMy4xMy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEtiQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyKL1VzZXJzL3N0ZXZhbi9Eb2N1bWVudHMvQ2VudHJhbGUgTHlvbi8zQS9NYWNoaW5lIExlYXJuaW5nL2hhbmRzLW9uLXJsLy52ZW52L2xpYi9weXRob24zLjEzL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwg+AZUAVAEkAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4ZDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "macOS-15.3-arm64-arm-64bit-Mach-O Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:23 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T8122", "Python": "3.13.1", "Stable-Baselines3": "2.5.0", "PyTorch": "2.6.0", "GPU Enabled": "False", "Numpy": "2.2.3", "Cloudpickle": "3.1.1", "Gymnasium": "1.0.0", "OpenAI Gym": "0.26.2"}}
|
ddpg-panda-reach-100k.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f766ea19024b881fb3ff4eb5d3c9e28a334c5b16815904943bba229b6eadb360
|
| 3 |
+
size 4137669
|
ddpg-panda-reach-100k/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.5.0
|
ddpg-panda-reach-100k/actor.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d179d8a5a07434a1e26e94b7b047ea7383a57de26d873eaf19352e5376cb4fcb
|
| 3 |
+
size 1025952
|
ddpg-panda-reach-100k/critic.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83b31020ed5b8acb60f55818c636ecb40419ad7e801471eb2c96b12f6c7a305e
|
| 3 |
+
size 1033888
|
ddpg-panda-reach-100k/data
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
| 5 |
+
"__module__": "stable_baselines3.td3.policies",
|
| 6 |
+
"__firstlineno__": 314,
|
| 7 |
+
"__doc__": "\nPolicy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n:param observation_space: Observation space\n:param action_space: Action space\n:param lr_schedule: Learning rate schedule (could be constant)\n:param net_arch: The specification of the policy and value networks.\n:param activation_fn: Activation function\n:param features_extractor_class: Features extractor to use.\n:param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n:param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n:param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n:param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n:param n_critics: Number of critic networks to create.\n:param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n",
|
| 8 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x12b4a5080>",
|
| 9 |
+
"__static_attributes__": [],
|
| 10 |
+
"__abstractmethods__": "frozenset()",
|
| 11 |
+
"_abc_impl": "<_abc._abc_data object at 0x12b4a2b40>"
|
| 12 |
+
},
|
| 13 |
+
"verbose": 1,
|
| 14 |
+
"policy_kwargs": {
|
| 15 |
+
"n_critics": 1
|
| 16 |
+
},
|
| 17 |
+
"num_timesteps": 100000,
|
| 18 |
+
"_total_timesteps": 100000,
|
| 19 |
+
"_num_timesteps_at_start": 0,
|
| 20 |
+
"seed": null,
|
| 21 |
+
"action_noise": null,
|
| 22 |
+
"start_time": 1739907821907515000,
|
| 23 |
+
"learning_rate": 0.001,
|
| 24 |
+
"tensorboard_log": "runs/1i1l8oe5",
|
| 25 |
+
"_last_obs": {
|
| 26 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 27 |
+
":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAACwOFz4nbGs+Vw8oP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAALA4XPidsaz5XDyg/SUq+vD2tAL88hck+lGgOSwFLBoaUaBJ0lFKUdS4=",
|
| 28 |
+
"achieved_goal": "[[0.147515 0.22990476 0.65648407]]",
|
| 29 |
+
"desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]",
|
| 30 |
+
"observation": "[[ 0.147515 0.22990476 0.65648407 -0.02322878 -0.5026434 0.39359462]]"
|
| 31 |
+
},
|
| 32 |
+
"_last_episode_starts": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_original_obs": {
|
| 37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 38 |
+
":serialized:": "gAWVLAEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHgDHj7U9Wc+YCUlP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYMAAAAAAAAACe9LL3d7Za9kwUMPZRoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolhgAAAAAAAAAeAMePtT1Zz5gJSU/XuAzvqAJAD8UBz89lGgOSwFLBoaUaBJ0lFKUdS4=",
|
| 39 |
+
"achieved_goal": "[[0.1543101 0.2265237 0.64510155]]",
|
| 40 |
+
"desired_goal": "[[-0.04217258 -0.07369588 0.034185 ]]",
|
| 41 |
+
"observation": "[[ 0.1543101 0.2265237 0.64510155 -0.17566058 0.50014687 0.04663761]]"
|
| 42 |
+
},
|
| 43 |
+
"_episode_num": 3064,
|
| 44 |
+
"use_sde": false,
|
| 45 |
+
"sde_sample_freq": -1,
|
| 46 |
+
"_current_progress_remaining": 0.0,
|
| 47 |
+
"_stats_window_size": 100,
|
| 48 |
+
"ep_info_buffer": {
|
| 49 |
+
":type:": "<class 'collections.deque'>",
|
| 50 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEE20VrRBu6MAWyUSzKMAXSUR0B5ozE0iyIIdX2UKGgGR8A9k62OQyRCaAdLMmgIR0B5pqnfl6qsdX2UKGgGR7+hhc7hegL7aAdLAWgIR0B5prv+fh/BdX2UKGgGR7+l3+uNgjQiaAdLAWgIR0B5ps3T/hl2dX2UKGgGR8AzAI/Z/Tb4aAdLMmgIR0B5qlhrnDBNdX2UKGgGR8AyBTfBN21VaAdLMmgIR0B5rehTOxB3dX2UKGgGR8AtFO0svqTsaAdLMmgIR0B5sWp97WupdX2UKGgGR8BChNTLns9kaAdLMmgIR0B5tOdoWYWtdX2UKGgGR8BBGsiSq2jPaAdLMmgIR0B5uGws5GSZdX2UKGgGR8BCQ3gUDdP+aAdLMmgIR0B5u+U/wAlwdX2UKGgGR8BB4Ire67NCaAdLMmgIR0B5v1sdkrf+dX2UKGgGR7+nj2i+L3sYaAdLAWgIR0B5v24nWrfcdX2UKGgGR8A5sKKHfuTiaAdLMmgIR0B5wwqTbFjvdX2UKGgGR8A5AGAkLQXzaAdLMmgIR0B5xoV2zOX3dX2UKGgGR8BDgyr5qM3qaAdLMmgIR0B5yf/2kBS2dX2UKGgGR8A7Rbuc+aBqaAdLMmgIR0B5zXLlmvnsdX2UKGgGR8A+hz5XU6PsaAdLMmgIR0B50QBDG96DdX2UKGgGR8BCJNjslb/waAdLMmgIR0B51HL3bmEHdX2UKGgGR8A6HEnssxwiaAdLMmgIR0B51/YODrZ8dX2UKGgGR8A+hDOTq0MPaAdLMmgIR0B523qxC6YmdX2UKGgGR8A9pgbZOBUaaAdLMmgIR0B53wd92HLzdX2UKGgGR8AqU1O0svqUaAdLMmgIR0B54pyHVPN3dX2UKGgGR8A0L/Z/Tb35aAdLMmgIR0B55jBCUorndX2UKGgGR8BAkTwlSjxkaAdLMmgIR0B56aMHbAUMdX2UKGgGR8BEnuJcgQpXaAdLMmgIR0B57TVEuxr0dX2UKGgGR8BBmtIkJKJ3aAdLMmgIR0B58K/9Hc1wdX2UKGgGR8BAuCkfs/puaAdLMmgIR0B59C4kNWludX2UKGgGR8A/IG3WnTAnaAdLMmgIR0B596iM5wOwdX2UKGgGR8Awh+BYmsvJaAdLMmgIR0B5+yThYNiIdX2UKGgGR8BCIBnBciW3aAdLMmgIR0B5/pTwUg0TdX2UKGgGR8A+OOWSlnAZaAdLMmgIR0B6Aha6jFhodX2UKGgGR8AqwzZ6D5CXaAdLMmgIR0B6BbIxQBPsdX2UKGgGR8A4o4YaYNRWaAdLMmgIR0B6CVD9fkWAdX2UKGgGR8A9hRhMJx//aAdLMmgIR0B6DM5Ke05VdX2UKGgGR8A1Cmvnr6ciaAdLMmgIR0B6EDu3MINWdX2UKGgGR8BAxVOsT37DaAdLMmgIR0B6E69Zid8RdX2UKGgGR8A63zQeFL39aAdLMmgIR0B6F0dxQzk7dX2UKGgGR8AyZ1SflIVeaAdLMmgIR0B6GsAIY3vQdX2UKGgGR8Ay0iosI3R5aAdLMmgIR0B6Hjs1KoQ4dX2UKGgGR8BDZnAAQxvfaAdLMmgIR0B6IbO/tY0VdX2UKGgGR8A3yYcNpdrwaAdLMmgIR0B6JUlv60pmdX2UKGgGR8A7hrUb1h9caAdLMmgIR0B6KP1DjR2KdX2UKGgGR8BEDC83++/QaAdLMmgIR0B6LISqU/wBdX2UKGgGR8Aw1hfjS5RTaAdLMmgIR0B6L/NX5nDjdX2UKGgGR8A/fmPYFqzraAdLMmgIR0B6M4aIeo1ldX2UKGgGR8BB/KsMiKR/aAdLMmgIR0B6Nv0HyEtedX2UKGgGR8A+zIa99MK1aAdLMmgIR0B6OnwWnCO4dX2UKGgGR8A+y+CbtqpMaAdLMmgIR0B6PgQK8cuKdX2UKGgGR8ASYX2ugYgraAdLMmgIR0B6QZ3wCr93dX2UKGgGR8ApFWEK3NLUaAdLMmgIR0B6RR0Rvm5ldX2UKGgGR8BFHqIacZtOaAdLMmgIR0B6SJQWN3nqdX2UKGgGR8A2IbS7Xg+AaAdLMmgIR0B6TCI2wV0tdX2UKGgGR8A05z9jwx33aAdLMmgIR0B6T8lw97ngdX2UKGgGR8AhgG7BfrrxaAdLMmgIR0B6U1IwudwvdX2UKGgGR8A9A4oJAt4BaAdLMmgIR0B6VtPUKArhdX2UKGgGR7+iouPFNtZWaAdLAWgIR0B6VuetjkMkdX2UKGgGR8A6V6mfoRqXaAdLMmgIR0B6Wng9/z8QdX2UKGgGR7+iCxu89Oh1aAdLAWgIR0B6WoskIHC5dX2UKGgGR8AyqSs8xKxtaAdLMmgIR0B6XiI/JNj9dX2UKGgGR8A5v2Bas6q9aAdLMmgIR0B6YZY1YQrddX2UKGgGR8AxRaV2Rq46aAdLMmgIR0B6ZSO3lS0jdX2UKGgGR8BAXgH/tICmaAdLMmgIR0B6aLBBRhttdX2UKGgGR8BA2rtVrAP/aAdLMmgIR0B6bDr0J4SpdX2UKGgGR8AheC7K7qY7aAdLMmgIR0B6b7f1pTMrdX2UKGgGR8AyethNM496aAdLMmgIR0B6c1p7CzkZdX2UKGgGR8AhthsImgJ1aAdLMmgIR0B6dt2r4nF6dX2UKGgGR8AkBKdQO4G2aAdLMmgIR0B6em5AhStOdX2UKGgGR8BAHgaWHDaXaAdLMmgIR0B6fec5Ke05dX2UKGgGR8AxtHEdeY2LaAdLMmgIR0B6gX1CgK4QdX2UKGgGR8BCAIF/x2B8aAdLMmgIR0B6hO8yvcJudX2UKGgGR8A6K1TisGPgaAdLMmgIR0B6iG5z5oGqdX2UKGgGR8BBuvyCnP3SaAdLMmgIR0B6i+CaqjrSdX2UKGgGR8AtXQeFL39KaAdLMmgIR0B6j5EhJRO2dX2UKGgGR8BAhlpGnXNDaAdLMmgIR0B6kwXqJMxodX2UKGgGR8Aoj93r2QGOaAdLMmgIR0B6lnrhR64UdX2UKGgGR8A6EHcDbJwLaAdLMmgIR0B6mfblA/s3dX2UKGgGR7/MXN1QqI8AaAdLBGgIR0B6mkpRXOnmdX2UKGgGR8AwWnhsImgKaAdLMmgIR0B6ndC9h7VsdX2UKGgGR8Ac0EhaC+URaAdLMmgIR0B6oU+s5n14dX2UKGgGR8AucLKFIuoQaAdLMmgIR0B6pN5C4SYgdX2UKGgGR8A6t2NvOyE+aAdLMmgIR0B6qGZF5OafdX2UKGgGR8BBuwCbMHKPaAdLMmgIR0B6q96Z6UqydX2UKGgGR8BBAOU+s5n2aAdLMmgIR0B6r15VwPy1dX2UKGgGR8BALEqDsdDIaAdLMmgIR0B6sthw2l2vdX2UKGgGR8AoT+2mYSg5aAdLMmgIR0B6tmRwIdELdX2UKGgGR8A1UhFVktmMaAdLMmgIR0B6udg6U7jldX2UKGgGR8A4rYNRWLgoaAdLMmgIR0B6vUsjFAE/dX2UKGgGR8BClAkC3gDSaAdLMmgIR0B6wL7O3UhFdX2UKGgGR8AumAEMb3oLaAdLMmgIR0B6xEjJMg2ZdX2UKGgGR8A9m/7BO58SaAdLMmgIR0B6x7o0Q9RrdX2UKGgGR8A3RJSiudPMaAdLMmgIR0B6y0cCHRCydX2UKGgGR8BBb6OHWSU1aAdLMmgIR0B6zsK5TZQIdX2UKGgGR8A/QLORkmQbaAdLMmgIR0B60lUbT+efdX2UKGgGR8A7fOwxFiKBaAdLMmgIR0B61c5S3soldX2UKGgGR8A9Fttygf2caAdLMmgIR0B62UsTWXkYdX2UKGgGR8A/GDtgKF7EaAdLMmgIR0B63NHQQcxTdX2UKGgGR8A9ltNzr/sFaAdLMmgIR0B64F/b0voNdX2UKGgGR7+jakAPuognaAdLAWgIR0B64HMvAXVLdX2UKGgGR8A8kD1oQFs6aAdLMmgIR0B64+owVTJhdX2UKGgGR8A1bkbPyCnQaAdLMmgIR0B651t4zJp4dWUu"
|
| 51 |
+
},
|
| 52 |
+
"ep_success_buffer": {
|
| 53 |
+
":type:": "<class 'collections.deque'>",
|
| 54 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiIiJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYllLg=="
|
| 55 |
+
},
|
| 56 |
+
"_n_updates": 99900,
|
| 57 |
+
"observation_space": {
|
| 58 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
| 59 |
+
":serialized:": "gAWVkgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAABAQGUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgKKYGUfZQoaA1oE2gWSwOFlGgYaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlGgedJRSlGghaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGgraBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlGgwaBsolgMAAAAAAAAAAQEBlGglSwOFlGgedJRSlGg1jAUtMTAuMJRoN4wEMTAuMJRoOU51YowLb2JzZXJ2YXRpb26UaAopgZR9lChoDWgTaBZLBoWUaBhoGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBNLBoWUaB50lFKUaCFoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaCtoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBNLBoWUaB50lFKUaDBoGyiWBgAAAAAAAAABAQEBAQGUaCVLBoWUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVidWgWTmgNTmg5TnViLg==",
|
| 60 |
+
"spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}",
|
| 61 |
+
"_shape": null,
|
| 62 |
+
"dtype": null,
|
| 63 |
+
"_np_random": null
|
| 64 |
+
},
|
| 65 |
+
"action_space": {
|
| 66 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 67 |
+
":serialized:": "gAWVZwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLB4WUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhwAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sHhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBwAAAAAAAAABAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSweFlGgWdJRSlIwEaGlnaJRoEyiWHAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSweFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBwAAAAAAAAABAQEBAQEBlGgdSweFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEIfNSY3y+wnnQZ4bfcXqnT6MA2luY5SKEPeUvqlv2sy/BMgAVjLONEZ1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihDXq+JBX+bWLBFweBD86WE+SwBoEyiWEAAAAAAAAACftYmsPljVNpEixjk0BbKXlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYksEhZRoFnSUUpRLBCl0lGKGlGKFlFKUdWIu",
|
| 68 |
+
"dtype": "float32",
|
| 69 |
+
"_shape": [
|
| 70 |
+
7
|
| 71 |
+
],
|
| 72 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1.]",
|
| 73 |
+
"bounded_below": "[ True True True True True True True]",
|
| 74 |
+
"high": "[1. 1. 1. 1. 1. 1. 1.]",
|
| 75 |
+
"bounded_above": "[ True True True True True True True]",
|
| 76 |
+
"low_repr": "-1.0",
|
| 77 |
+
"high_repr": "1.0",
|
| 78 |
+
"_np_random": "Generator(PCG64)"
|
| 79 |
+
},
|
| 80 |
+
"n_envs": 1,
|
| 81 |
+
"buffer_size": 1000000,
|
| 82 |
+
"batch_size": 256,
|
| 83 |
+
"learning_starts": 100,
|
| 84 |
+
"tau": 0.005,
|
| 85 |
+
"gamma": 0.99,
|
| 86 |
+
"gradient_steps": 1,
|
| 87 |
+
"optimize_memory_usage": false,
|
| 88 |
+
"replay_buffer_class": {
|
| 89 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 90 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
| 91 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
| 92 |
+
"__firstlineno__": 15,
|
| 93 |
+
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
| 94 |
+
"__doc__": "\nHindsight Experience Replay (HER) buffer.\nPaper: https://arxiv.org/abs/1707.01495\n\nReplay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n.. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n:param buffer_size: Max number of element in the buffer\n:param observation_space: Observation space\n:param action_space: Action space\n:param env: The training environment\n:param device: PyTorch device\n:param n_envs: Number of parallel environments\n:param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n:param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n:param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n:param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n:param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n",
|
| 95 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x12b4a5da0>",
|
| 96 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x12b4a5e40>",
|
| 97 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x12b4a5ee0>",
|
| 98 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x12b4a5f80>",
|
| 99 |
+
"add": "<function HerReplayBuffer.add at 0x12b4a60c0>",
|
| 100 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x12b4a6160>",
|
| 101 |
+
"sample": "<function HerReplayBuffer.sample at 0x12b4a6200>",
|
| 102 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x12b4a62a0>",
|
| 103 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x12b4a6340>",
|
| 104 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x12b4a63e0>",
|
| 105 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x12b4a6480>",
|
| 106 |
+
"__static_attributes__": [
|
| 107 |
+
"_current_ep_start",
|
| 108 |
+
"copy_info_dict",
|
| 109 |
+
"env",
|
| 110 |
+
"ep_length",
|
| 111 |
+
"ep_start",
|
| 112 |
+
"goal_selection_strategy",
|
| 113 |
+
"her_ratio",
|
| 114 |
+
"infos",
|
| 115 |
+
"n_sampled_goal"
|
| 116 |
+
],
|
| 117 |
+
"__abstractmethods__": "frozenset()",
|
| 118 |
+
"_abc_impl": "<_abc._abc_data object at 0x12b4bdec0>"
|
| 119 |
+
},
|
| 120 |
+
"replay_buffer_kwargs": {},
|
| 121 |
+
"train_freq": {
|
| 122 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
| 123 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
| 124 |
+
},
|
| 125 |
+
"use_sde_at_warmup": false,
|
| 126 |
+
"policy_delay": 1,
|
| 127 |
+
"target_noise_clip": 0.0,
|
| 128 |
+
"target_policy_noise": 0.1,
|
| 129 |
+
"lr_schedule": {
|
| 130 |
+
":type:": "<class 'function'>",
|
| 131 |
+
":serialized:": "gAWVigQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyY+AZUAWwEAAAAAAAAAAFQBIgBVADUBAAAAAAAANQEAAAAAAAAkAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMii9Vc2Vycy9zdGV2YW4vRG9jdW1lbnRzL0NlbnRyYWxlIEx5b24vM0EvTWFjaGluZSBMZWFybmluZy9oYW5kcy1vbi1ybC8udmVudi9saWIvcHl0aG9uMy4xMy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEtiQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyKL1VzZXJzL3N0ZXZhbi9Eb2N1bWVudHMvQ2VudHJhbGUgTHlvbi8zQS9NYWNoaW5lIExlYXJuaW5nL2hhbmRzLW9uLXJsLy52ZW52L2xpYi9weXRob24zLjEzL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwg+AZUAVAEkAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4ZDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"
|
| 132 |
+
},
|
| 133 |
+
"actor_batch_norm_stats": [],
|
| 134 |
+
"critic_batch_norm_stats": [],
|
| 135 |
+
"actor_batch_norm_stats_target": [],
|
| 136 |
+
"critic_batch_norm_stats_target": []
|
| 137 |
+
}
|
ddpg-panda-reach-100k/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b0c4c329a68c9cce9c2f5e0ca390a0ab5349df9facd4bbebd2af72c01c2afde
|
| 3 |
+
size 2058638
|
ddpg-panda-reach-100k/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
|
| 3 |
+
size 864
|
ddpg-panda-reach-100k/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: macOS-15.3-arm64-arm-64bit-Mach-O Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:23 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T8122
|
| 2 |
+
- Python: 3.13.1
|
| 3 |
+
- Stable-Baselines3: 2.5.0
|
| 4 |
+
- PyTorch: 2.6.0
|
| 5 |
+
- GPU Enabled: False
|
| 6 |
+
- Numpy: 2.2.3
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 1.0.0
|
| 9 |
+
- OpenAI Gym: 0.26.2
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -21.0586356125772, "std_reward": 6.597103403222232, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-18T20:50:52.874923"}
|