#!/usr/bin/env python3 """ Multi-Head QA Metrics Inference Script ===================================== This script loads a trained multi-head QA classification model and provides inference capabilities for evaluating call center transcripts against various QA metrics including opening, listening, proactiveness, resolution, hold, and closing. Usage: python inference.py --model_path "path/to/model" --text "transcript text" Or use the interactive mode: python inference.py --model_path "path/to/model" --interactive """ import os import torch import torch.nn as nn import numpy as np import argparse import json from typing import Dict, List, Optional from transformers import DistilBertTokenizer, DistilBertModel, AutoConfig, DistilBertPreTrainedModel from transformers.modeling_outputs import SequenceClassifierOutput # QA Heads Configuration - must match training configuration QA_HEADS_CONFIG = { "opening": 1, "listening": 5, "proactiveness": 3, "resolution": 5, "hold": 2, "closing": 1 } # Submetric labels for better output interpretation HEAD_SUBMETRIC_LABELS = { "opening": [ "Use of call opening phrase" ], "listening": [ "Caller was not interrupted", "Empathizes with the caller", "Paraphrases or rephrases the issue", "Uses 'please' and 'thank you'", "Does not hesitate or sound unsure" ], "proactiveness": [ "Willing to solve extra issues", "Confirms satisfaction with action points", "Follows up on case updates" ], "resolution": [ "Gives accurate information", "Correct language use", "Consults if unsure", "Follows correct steps", "Explains solution process clearly" ], "hold": [ "Explains before placing on hold", # "Provides status update after hold", "Thanks caller for holding" ], "closing": [ "Proper call closing phrase used" ] } class MultiHeadQAClassifier(DistilBertPreTrainedModel): """ Multi-head QA classifier model for call center transcript evaluation. Each head corresponds to a different QA metric. """ def __init__(self, config): super().__init__(config) # Get heads config from model config self.heads_config = getattr(config, 'heads_config', { "opening": 1, "listening": 5, "proactiveness": 3, "resolution": 5, "hold": 2, "closing": 1 }) self.bert = DistilBertModel(config) classifier_dropout = getattr(config, 'classifier_dropout', 0.2) self.dropout = nn.Dropout(classifier_dropout) # Multiple heads, one per QA metric self.heads = nn.ModuleDict({ head: nn.Linear(config.hidden_size, output_dim) for head, output_dim in self.heads_config.items() }) # Initialize weights self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, labels: Optional[Dict[str, torch.Tensor]] = None, **kwargs ): outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, **kwargs ) pooled_output = self.dropout(outputs.last_hidden_state[:, 0]) # [CLS] logits = {} losses = {} loss_total = 0 for head_name, head_layer in self.heads.items(): out = head_layer(pooled_output) logits[head_name] = torch.sigmoid(out) # probabilities if labels is not None and head_name in labels: loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(out, labels[head_name]) losses[head_name] = loss.item() loss_total += loss return { "logits": logits, "loss": loss_total if labels is not None else None, "losses": losses if labels is not None else None } class QAMetricsInference: """ Inference class for QA metrics prediction on call center transcripts. """ def __init__(self, model_path: str, device: Optional[str] = None): """ Initialize the inference engine. Args: model_path: Path to the saved model directory device: Device to run inference on ('cpu', 'cuda', or None for auto-detect) """ self.model_path = model_path self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") self.max_length = 512 # Load tokenizer and model self._load_model() def _load_model(self): """Load the trained model and tokenizer.""" print(f"Loading model from: {self.model_path}") # Load tokenizer try: self.tokenizer = DistilBertTokenizer.from_pretrained(self.model_path) print("✓ Tokenizer loaded successfully") except Exception as e: print(f"✗ Error loading tokenizer: {e}") raise # Load model try: if os.path.isdir(self.model_path): # Load from local directory config = AutoConfig.from_pretrained(self.model_path) self.model = MultiHeadQAClassifier(config) model_state_path = os.path.join(self.model_path, "pytorch_model.bin") if not os.path.exists(model_state_path): raise FileNotFoundError(f"Model file not found: {model_state_path}") state_dict = torch.load(model_state_path, map_location=self.device) self.model.load_state_dict(state_dict) else: # Load from Hugging Face Hub self.model = MultiHeadQAClassifier.from_pretrained(self.model_path) self.model.to(self.device) self.model.eval() print(f"✓ Model loaded successfully on {self.device}") except Exception as e: print(f"✗ Error loading model: {e}") raise def predict(self, text: str, threshold: float = 0.5, return_raw: bool = False) -> Dict: """ Predict QA metrics for a given transcript. Args: text: Input transcript text threshold: Threshold for binary classification (default: 0.5) return_raw: If True, return raw probabilities along with predictions Returns: Dictionary containing predictions for each QA head """ # Tokenize input encoding = self.tokenizer( text, return_tensors="pt", padding="max_length", truncation=True, max_length=self.max_length ) input_ids = encoding["input_ids"].to(self.device) attention_mask = encoding["attention_mask"].to(self.device) # Forward pass with torch.no_grad(): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) logits = outputs["logits"] # Process results results = {} for head, probs in logits.items(): probs_np = probs.cpu().numpy()[0] # Get first (and only) example preds = (probs_np > threshold).astype(int) submetrics = HEAD_SUBMETRIC_LABELS.get(head, [f"Submetric {i+1}" for i in range(len(probs_np))]) head_results = [] for i, (label, prob, pred) in enumerate(zip(submetrics, probs_np, preds)): result_item = { "submetric": label, "prediction": bool(pred), "score": "✓" if pred else "✗" } if return_raw: result_item["probability"] = float(prob) head_results.append(result_item) results[head] = head_results return results def predict_and_display(self, text: str, threshold: float = 0.5): """ Predict and display results in a formatted way. Args: text: Input transcript text threshold: Threshold for binary classification """ print(f"\n📞 Transcript Analysis") print("=" * 60) print(f"Text: {text[:200]}{'...' if len(text) > 200 else ''}") print("=" * 60) results = self.predict(text, threshold, return_raw=True) for head, head_results in results.items(): print(f"\n🔹 {head.upper()}:") for item in head_results: prob = item["probability"] print(f" ➤ {item['submetric']}: P={prob:.3f} → {item['score']}") def batch_predict(self, texts: List[str], threshold: float = 0.5) -> List[Dict]: """ Predict QA metrics for multiple transcripts. Args: texts: List of transcript texts threshold: Threshold for binary classification Returns: List of prediction dictionaries """ results = [] for text in texts: result = self.predict(text, threshold) results.append(result) return results def export_predictions(self, texts: List[str], output_path: str, threshold: float = 0.5): """ Export predictions to a JSON file. Args: texts: List of transcript texts output_path: Path to save the results threshold: Threshold for binary classification """ results = [] for i, text in enumerate(texts): prediction = self.predict(text, threshold, return_raw=True) results.append({ "text_id": i, "text": text, "predictions": prediction }) with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, indent=2, ensure_ascii=False) print(f"✓ Predictions exported to: {output_path}") def main(): """Main function for command-line interface.""" parser = argparse.ArgumentParser(description="QA Metrics Inference Script") parser.add_argument("--model_path", required=True, help="Path to the trained model directory") parser.add_argument("--text", help="Text to analyze") parser.add_argument("--input_file", help="Path to text file containing transcripts (one per line)") parser.add_argument("--output_file", help="Path to save predictions (JSON format)") parser.add_argument("--threshold", type=float, default=0.5, help="Classification threshold (default: 0.5)") parser.add_argument("--interactive", action="store_true", help="Run in interactive mode") parser.add_argument("--device", help="Device to use (cpu/cuda)") args = parser.parse_args() # Initialize inference engine try: inference_engine = QAMetricsInference(args.model_path, args.device) except Exception as e: print(f"Failed to initialize inference engine: {e}") return # Interactive mode if args.interactive: print("\n🤖 QA Metrics Interactive Analysis") print("Type 'quit' to exit, 'help' for commands") print("-" * 50) while True: try: user_input = input("\nEnter transcript text: ").strip() if user_input.lower() == 'quit': break elif user_input.lower() == 'help': print("\nCommands:") print(" - Enter transcript text to analyze") print(" - 'quit' to exit") print(" - 'help' to show this message") continue elif not user_input: print("Please enter some text to analyze.") continue inference_engine.predict_and_display(user_input, args.threshold) except KeyboardInterrupt: print("\n\nGoodbye! 👋") break except Exception as e: print(f"Error during analysis: {e}") # Single text analysis elif args.text: inference_engine.predict_and_display(args.text, args.threshold) # Batch processing from file elif args.input_file: try: with open(args.input_file, 'r', encoding='utf-8') as f: texts = [line.strip() for line in f if line.strip()] print(f"Processing {len(texts)} transcripts...") if args.output_file: inference_engine.export_predictions(texts, args.output_file, args.threshold) else: results = inference_engine.batch_predict(texts, args.threshold) for i, result in enumerate(results): print(f"\n--- Transcript {i+1} ---") print(json.dumps(result, indent=2)) except FileNotFoundError: print(f"Input file not found: {args.input_file}") except Exception as e: print(f"Error processing file: {e}") else: print("Please provide either --text, --input_file, or use --interactive mode") print("Use --help for more information") if __name__ == "__main__": main()