Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct/blob/main/LICENSE
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- code
|
| 10 |
+
- codeqwen
|
| 11 |
+
- chat
|
| 12 |
+
- qwen
|
| 13 |
+
- qwen-coder
|
| 14 |
+
- fp8
|
| 15 |
+
- llm-compressor
|
| 16 |
+
- compressed-tensors
|
| 17 |
+
- vllm
|
| 18 |
+
base_model:
|
| 19 |
+
- Qwen/Qwen2.5-Coder-14B-Instruct
|
| 20 |
+
---
|
| 21 |
+
## Model Overview
|
| 22 |
+
- **Model Architecture:** Qwen2ForCausalLM
|
| 23 |
+
- **Input:** Text
|
| 24 |
+
- **Output:** Text
|
| 25 |
+
- **Model Optimizations:**
|
| 26 |
+
- **Weight quantization:** FP8
|
| 27 |
+
- **Activation quantization:** FP8
|
| 28 |
+
- **Release Date:** 11/28/2024
|
| 29 |
+
- **Version:** 1.0
|
| 30 |
+
- **Model Developers:** Red Hat
|
| 31 |
+
|
| 32 |
+
Quantized version of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct).
|
| 33 |
+
|
| 34 |
+
### Model Optimizations
|
| 35 |
+
|
| 36 |
+
This model was obtained by quantizing the weights and activations of [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) to FP8 data type.
|
| 37 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
| 38 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized.
|
| 39 |
+
|
| 40 |
+
## Deployment
|
| 41 |
+
|
| 42 |
+
### Use with vLLM
|
| 43 |
+
|
| 44 |
+
1. Initialize vLLM server:
|
| 45 |
+
```
|
| 46 |
+
vllm serve RedHatAI/Qwen2.5-Coder-14B-Instruct-FP8-dynamic
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
2. Send requests to the server:
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from openai import OpenAI
|
| 53 |
+
|
| 54 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
| 55 |
+
openai_api_key = "EMPTY"
|
| 56 |
+
openai_api_base = "http://<your-server-host>:8000/v1"
|
| 57 |
+
|
| 58 |
+
client = OpenAI(
|
| 59 |
+
api_key=openai_api_key,
|
| 60 |
+
base_url=openai_api_base,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
model = "RedHatAI/Qwen2.5-Coder-14B-Instruct-FP8-dynamic"
|
| 64 |
+
|
| 65 |
+
messages = [
|
| 66 |
+
[{"role": "user", "content": "Write a quick sort algorithm."}],
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
outputs = client.chat.completions.create(
|
| 70 |
+
model=model,
|
| 71 |
+
messages=messages,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
generated_text = outputs.choices[0].message.content
|
| 75 |
+
print(generated_text)
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
## Creation
|
| 79 |
+
|
| 80 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
| 81 |
+
|
| 82 |
+
<details>
|
| 83 |
+
<summary>Model Creation Code</summary>
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
| 87 |
+
from llmcompressor.transformers import oneshot
|
| 88 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 89 |
+
|
| 90 |
+
# Load model
|
| 91 |
+
model_stub = "Qwen/Qwen2.5-Coder-14B-Instruct"
|
| 92 |
+
model_name = model_stub.split("/")[-1]
|
| 93 |
+
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(model_stub, dtype="auto")
|
| 95 |
+
|
| 96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 97 |
+
|
| 98 |
+
# Configure the quantization algorithm and scheme
|
| 99 |
+
recipe = QuantizationModifier(
|
| 100 |
+
ignore=["lm_head"],
|
| 101 |
+
targets="Linear",
|
| 102 |
+
scheme="FP8_dynamic",
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Apply quantization
|
| 106 |
+
oneshot(
|
| 107 |
+
model=model,
|
| 108 |
+
recipe=recipe,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Save to disk in compressed-tensors format
|
| 112 |
+
save_path = model_name + "-FP8-dynamic"
|
| 113 |
+
model.save_pretrained(save_path)
|
| 114 |
+
tokenizer.save_pretrained(save_path)
|
| 115 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
| 116 |
+
```
|
| 117 |
+
</details>
|
| 118 |
+
|