""" Install dependencies: pip install pytorch360convert Example ffmpeg command to use on output frames: ffmpeg -framerate 60 -i output_frames/sweep360_%06d.png -c:v libx264 -pix_fmt yuv420p my_360_video.mp4 # Example for calculating FOV to use for specific dimensions import math width, height = 1280, 896 ratio = width / height vfov_deg = 70.0 vfov = math.radians(vfov_deg) hfov = 2 * math.atan(ratio * math.tan(vfov / 2)) hfov_deg = math.degrees(hfov) print(hfov_deg) # ~90.02° """ import math import os from typing import Dict, List, Optional, Tuple, Union import torch from pytorch360convert import e2p from PIL import Image import numpy as np from tqdm import tqdm def load_image_to_tensor(path: str, device: Optional[torch.device] = None) -> torch.Tensor: """ Load an image file to a float torch tensor in CHW format, range [0,1]. """ img = Image.open(path).convert("RGB") arr = np.array(img).astype(np.float32) / 255.0 # HWC float32 t = torch.from_numpy(arr) # HWC t = t.permute(2, 0, 1) # CHW if device is not None: t = t.to(device) return t def _linear_progress(n_frames: int) -> List[float]: """ Generate a linear progression from 0.0 to 1.0 over n_frames. Args: n_frames (int): Number of frames. Returns: List[float]: List of normalized progress values. """ return [i / max(1, (n_frames - 1)) for i in range(n_frames)] def _ease_in_out_progress(n_frames: int) -> List[float]: """ Generate an ease-in-out progression (cosine smoothing) from 0.0 to 1.0. Args: n_frames (int): Number of frames. Returns: List[float]: List of normalized progress values. """ return [ 0.5 * (1 - math.cos(math.pi * (i / max(1, (n_frames - 1))))) for i in range(n_frames) ] def _save_tensor_as_image(tensor: torch.Tensor, path: str) -> None: """ Save a CHW float tensor (range [0, 1]) to directory """ if tensor.dim() == 4: # [B,H,W,C] -> take first tensor = tensor[0] tensor = tensor.permute(1, 2, 0) t = tensor.detach().cpu().clamp(0.0, 1.0) * 255.0 Image.fromarray(t.to(dtype=torch.uint8).numpy()).save(path) def generate_frames_from_equirect( equi_tensors: List[torch.Tensor], out_dir: str, resolution: Tuple[int, int] = (1080, 1920), fps: int = 30, duration_per_image: Optional[float] = 4.0, total_duration: Optional[float] = None, fov_deg: Union[float, Tuple[float, float]] = (70.0, 60.0), interpolation_mode: str = "bilinear", speed_profile: str = "constant", vertical_movement: Optional[Dict] = None, device: Optional[torch.device] = None, start_frame_index: int = 0, save_format: str = "png", start_yaw_deg: float = 0.0, end_yaw_deg: float = 360.0, filename_prefix: str = "frame", verbose: bool = True, ) -> List[str]: """ Generate video frames by sweeping through one or more equirectangular images. Args: equi_tensors (List[torch.Tensor]): List of equirectangular image tensors. out_dir (str): Output directory where frames will be saved. resolution (tuple of int): Output frame resolution as (height, width). Default: (1080, 1920) fps (int): Frames per second for timing calculations. Default: 30 duration_per_image (float): Duration in seconds for each image sweep. Default: 4.0 total_duration (float): Total duration in seconds for all images combined. Default: None fov_deg (float or tuple): Field of view in degrees. Default: (70.0, 60.0) interpolation_mode (str): Resampling interpolation. Options: "nearest", "bilinear", "bicubic". Default: "bilinear" speed_profile (str): Progression curve. Options: "constant", "ease_in_out". Default: "constant" vertical_movement (dict): Parameters for adding pitch movement. Default: None device (torch.device): Torch device to run on. Default: cpu start_frame_index (int): Starting frame index for naming. Default: 0 save_format (str): Image format. Options: "png", "jpg", "jpeg", "bmp". Default: "png" start_yaw_deg (float): Starting yaw angle in degrees. Default: 0.0 end_yaw_deg (float): Ending yaw angle in degrees. Default: 360.0 filename_prefix (str): Prefix for saved frame filenames. Default: "frame" verbose (bool): Print progress information. Default: True Returns: List[str]: List of file paths for the saved frames. """ os.makedirs(out_dir, exist_ok=True) device = device if device is not None else torch.device("cpu") saved_paths = [] n_images = len(equi_tensors) if n_images == 0: return saved_paths # Decide frames per image if total_duration is not None: assert total_duration > 0 seconds_per_image = total_duration / n_images else: seconds_per_image = duration_per_image if duration_per_image is not None else 4.0 frames_per_image = max(1, int(round(seconds_per_image * fps))) # Calculate degrees per frame for consistent speed vm = vertical_movement or {"mode": "none"} vm_mode = vm.get("mode", "none") horizontal_distance = abs(end_yaw_deg - start_yaw_deg) degrees_per_frame = horizontal_distance / frames_per_image # Calculate total frames for progress tracking total_frames = n_images * frames_per_image # Add extra frames for separate pole sweep if enabled if vm_mode == "separate" or vm_mode == "both": # Pole sweep path: level (0°) -> down (-85°) -> up (+85°) -> level (0°) = 340° total vertical_distance = 340.0 pole_frames = max(1, int(round(vertical_distance / degrees_per_frame))) total_frames += n_images * pole_frames # Choose progress function if speed_profile == "constant": progress_fn = _linear_progress elif speed_profile == "ease_in_out": progress_fn = _ease_in_out_progress else: raise ValueError("speed_profile must be 'constant' or 'ease_in_out'") frame_idx = start_frame_index current_frame = 0 e2p_jit = e2p yaw_start, yaw_end = start_yaw_deg, end_yaw_deg for img_idx, e_img in enumerate(equi_tensors): if verbose: print(f"Processing image {img_idx + 1}/{n_images}...") n = frames_per_image prog = progress_fn(n) yaw_values = [yaw_start + p * (yaw_end - yaw_start) for p in prog] # Vertical values if vm_mode == "during" or vm_mode == "both": amplitude = float(vm.get("amplitude_deg", 15.0)) vertical_pattern = vm.get("pattern", "sine") if vertical_pattern == "sine": v_values = [amplitude * math.sin(2 * math.pi * p) for p in prog] else: v_values = [amplitude * (2 * p - 1) for p in prog] else: v_values = [0.0] * n # Rotation frames for i_frame in tqdm(range(n), desc=f"Image {img_idx + 1} rotation", disable=not verbose): h_deg = yaw_values[i_frame] v_deg = v_values[i_frame] pers = e2p_jit( e_img, fov_deg=fov_deg, h_deg=h_deg, v_deg=v_deg, out_hw=resolution, mode=interpolation_mode, channels_first=True, ).unsqueeze(0) filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}" path = os.path.join(out_dir, filename) _save_tensor_as_image(pers, path) saved_paths.append(path) frame_idx += 1 current_frame += 1 # Optional separate pole sweep - continues from end position if vm_mode == "separate" or vm_mode == "both": if verbose: print(f" Generating pole sweep for image {img_idx + 1}...") # Continue from the ending yaw position final_yaw = yaw_values[-1] # Calculate frames based on angular distance to maintain constant speed horizontal_distance = abs(yaw_end - yaw_start) degrees_per_frame = horizontal_distance / frames_per_image # Vertical path: 0° -> -85° -> +85° -> 0° = 340° total vertical_distance = 340.0 pole_frames = max(1, int(round(vertical_distance / degrees_per_frame))) if verbose: print(f" Horizontal: {horizontal_distance}° in {frames_per_image} frames ({degrees_per_frame:.2f}°/frame)") print(f" Vertical: {vertical_distance}° in {pole_frames} frames ({degrees_per_frame:.2f}°/frame)") # Use linear progress for consistent speed throughout pole_progress = _linear_progress(pole_frames) pole_v_values = [] # Phase distances: 85° down, 170° up, 85° down total_distance = 340.0 phase1_distance = 85.0 # Level to bottom phase2_distance = 170.0 # Bottom to top phase3_distance = 85.0 # Top to level for p in pole_progress: current_distance = p * total_distance if current_distance <= phase1_distance: # Phase 1: Level (0°) -> Down (-85°) phase_progress = current_distance / phase1_distance v_deg = 0.0 - (85.0 * phase_progress) elif current_distance <= phase1_distance + phase2_distance: # Phase 2: Down (-85°) -> Up (+85°) phase_progress = (current_distance - phase1_distance) / phase2_distance v_deg = -85.0 + (170.0 * phase_progress) else: # Phase 3: Up (+85°) -> Level (0°) phase_progress = (current_distance - phase1_distance - phase2_distance) / phase3_distance v_deg = 85.0 - (85.0 * phase_progress) pole_v_values.append(v_deg) for pole_idx, v_deg in tqdm(enumerate(pole_v_values), total=len(pole_v_values), desc=f"Image {img_idx + 1} pole sweep", disable=not verbose): pers = e2p( e_img, fov_deg=fov_deg, h_deg=final_yaw, v_deg=v_deg, out_hw=resolution, mode=interpolation_mode, channels_first=True, ) filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}" path = os.path.join(out_dir, filename) _save_tensor_as_image(pers, path) saved_paths.append(path) frame_idx += 1 current_frame += 1 if verbose: print(f"\nCompleted! Generated {len(saved_paths)} frames in {out_dir}") return saved_paths def main(): """ Main function - configure your parameters here """ # Configuration IMAGE_PATHS = ["path/to/equi_image.jpg"] OUTPUT_DIR = "path/to/output_frames" start_idx = 0 # Frame generation settings WIDTH = 1280 HEIGHT = 896 FPS = 60 DURATION_PER_IMAGE = 10.0 FOV_HORIZONTAL = 90.0169847156118 FOV_VERTICAL = 70 # Movement settings SPEED_PROFILE = "constant" # "constant" or "ease_in_out" START_YAW = 0.0 END_YAW = 360.0 # Vertical movement (set mode to "none" to disable) VERTICAL_MOVEMENT = { "mode": "separate", # "none", "during", "separate", or "both" "amplitude_deg": 90.0, "pattern": "sine", # "sine" or "linear" } # Other settings INTERPOLATION_MODE = "bilinear" # "bilinear", "bicubic", or "nearest" SAVE_FORMAT = "png" # "png", "jpg", "jpeg", or "bmp" FILENAME_PREFIX = "sweep360" DEVICE = "cuda:0" # Load images as tensors equi_tensors = [] for img_path in IMAGE_PATHS: equi_tensors.append(load_image_to_tensor(img_path, DEVICE)) if not equi_tensors: print("No images loaded. Please add your equirectangular images.") return # Generate frames saved_paths = generate_frames_from_equirect( equi_tensors=equi_tensors, out_dir=OUTPUT_DIR, resolution=(HEIGHT, WIDTH), fps=FPS, duration_per_image=DURATION_PER_IMAGE, fov_deg=(FOV_HORIZONTAL, FOV_VERTICAL), interpolation_mode=INTERPOLATION_MODE, speed_profile=SPEED_PROFILE, vertical_movement=VERTICAL_MOVEMENT, start_yaw_deg=START_YAW, end_yaw_deg=END_YAW, save_format=SAVE_FORMAT, filename_prefix=FILENAME_PREFIX, verbose=True, start_frame_index=start_idx, ) print(f"Successfully generated {len(saved_paths)} frames") if __name__ == "__main__": main()