Add example video script
Browse files- create_360_sweep_frames.py +351 -0
create_360_sweep_frames.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Install dependencies:
|
| 3 |
+
pip install pytorch360convert
|
| 4 |
+
|
| 5 |
+
Example ffmpeg command to use on output frames:
|
| 6 |
+
ffmpeg -framerate 60 -i output_frames/sweep360_%06d.png -c:v libx264 -pix_fmt yuv420p my_360_video.mp4
|
| 7 |
+
|
| 8 |
+
# Example for calculating FOV to use for specific dimensions
|
| 9 |
+
import math
|
| 10 |
+
width, height = 1280, 896
|
| 11 |
+
ratio = width / height
|
| 12 |
+
vfov_deg = 70.0
|
| 13 |
+
vfov = math.radians(vfov_deg)
|
| 14 |
+
hfov = 2 * math.atan(ratio * math.tan(vfov / 2))
|
| 15 |
+
hfov_deg = math.degrees(hfov)
|
| 16 |
+
print(hfov_deg) # ~90.02°
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import math
|
| 20 |
+
import os
|
| 21 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
from pytorch360convert import e2p
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def load_image_to_tensor(path: str, device: Optional[torch.device] = None) -> torch.Tensor:
|
| 31 |
+
"""
|
| 32 |
+
Load an image file to a float torch tensor in CHW format, range [0,1].
|
| 33 |
+
"""
|
| 34 |
+
img = Image.open(path).convert("RGB")
|
| 35 |
+
arr = np.array(img).astype(np.float32) / 255.0 # HWC float32
|
| 36 |
+
t = torch.from_numpy(arr) # HWC
|
| 37 |
+
t = t.permute(2, 0, 1) # CHW
|
| 38 |
+
if device is not None:
|
| 39 |
+
t = t.to(device)
|
| 40 |
+
return t
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def _linear_progress(n_frames: int) -> List[float]:
|
| 44 |
+
"""
|
| 45 |
+
Generate a linear progression from 0.0 to 1.0 over n_frames.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
n_frames (int): Number of frames.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
List[float]: List of normalized progress values.
|
| 52 |
+
"""
|
| 53 |
+
return [i / max(1, (n_frames - 1)) for i in range(n_frames)]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _ease_in_out_progress(n_frames: int) -> List[float]:
|
| 57 |
+
"""
|
| 58 |
+
Generate an ease-in-out progression (cosine smoothing) from 0.0 to 1.0.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
n_frames (int): Number of frames.
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
List[float]: List of normalized progress values.
|
| 65 |
+
"""
|
| 66 |
+
return [
|
| 67 |
+
0.5 * (1 - math.cos(math.pi * (i / max(1, (n_frames - 1)))))
|
| 68 |
+
for i in range(n_frames)
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _save_tensor_as_image(tensor: torch.Tensor, path: str) -> None:
|
| 73 |
+
"""
|
| 74 |
+
Save a CHW float tensor (range [0, 1]) to directory
|
| 75 |
+
"""
|
| 76 |
+
if tensor.dim() == 4: # [B,H,W,C] -> take first
|
| 77 |
+
tensor = tensor[0]
|
| 78 |
+
tensor = tensor.permute(1, 2, 0)
|
| 79 |
+
t = tensor.detach().cpu().clamp(0.0, 1.0) * 255.0
|
| 80 |
+
Image.fromarray(t.to(dtype=torch.uint8).numpy()).save(path)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def generate_frames_from_equirect(
|
| 84 |
+
equi_tensors: List[torch.Tensor],
|
| 85 |
+
out_dir: str,
|
| 86 |
+
resolution: Tuple[int, int] = (1080, 1920),
|
| 87 |
+
fps: int = 30,
|
| 88 |
+
duration_per_image: Optional[float] = 4.0,
|
| 89 |
+
total_duration: Optional[float] = None,
|
| 90 |
+
fov_deg: Union[float, Tuple[float, float]] = (70.0, 60.0),
|
| 91 |
+
interpolation_mode: str = "bilinear",
|
| 92 |
+
speed_profile: str = "constant",
|
| 93 |
+
vertical_movement: Optional[Dict] = None,
|
| 94 |
+
device: Optional[torch.device] = None,
|
| 95 |
+
start_frame_index: int = 0,
|
| 96 |
+
save_format: str = "png",
|
| 97 |
+
start_yaw_deg: float = 0.0,
|
| 98 |
+
end_yaw_deg: float = 360.0,
|
| 99 |
+
filename_prefix: str = "frame",
|
| 100 |
+
verbose: bool = True,
|
| 101 |
+
) -> List[str]:
|
| 102 |
+
"""
|
| 103 |
+
Generate video frames by sweeping through one or more equirectangular images.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
equi_tensors (List[torch.Tensor]): List of equirectangular image tensors.
|
| 107 |
+
out_dir (str): Output directory where frames will be saved.
|
| 108 |
+
resolution (tuple of int): Output frame resolution as (height, width). Default: (1080, 1920)
|
| 109 |
+
fps (int): Frames per second for timing calculations. Default: 30
|
| 110 |
+
duration_per_image (float): Duration in seconds for each image sweep. Default: 4.0
|
| 111 |
+
total_duration (float): Total duration in seconds for all images combined. Default: None
|
| 112 |
+
fov_deg (float or tuple): Field of view in degrees. Default: (70.0, 60.0)
|
| 113 |
+
interpolation_mode (str): Resampling interpolation. Options: "nearest", "bilinear", "bicubic". Default: "bilinear"
|
| 114 |
+
speed_profile (str): Progression curve. Options: "constant", "ease_in_out". Default: "constant"
|
| 115 |
+
vertical_movement (dict): Parameters for adding pitch movement. Default: None
|
| 116 |
+
device (torch.device): Torch device to run on. Default: cpu
|
| 117 |
+
start_frame_index (int): Starting frame index for naming. Default: 0
|
| 118 |
+
save_format (str): Image format. Options: "png", "jpg", "jpeg", "bmp". Default: "png"
|
| 119 |
+
start_yaw_deg (float): Starting yaw angle in degrees. Default: 0.0
|
| 120 |
+
end_yaw_deg (float): Ending yaw angle in degrees. Default: 360.0
|
| 121 |
+
filename_prefix (str): Prefix for saved frame filenames. Default: "frame"
|
| 122 |
+
verbose (bool): Print progress information. Default: True
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
List[str]: List of file paths for the saved frames.
|
| 126 |
+
"""
|
| 127 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 128 |
+
device = device if device is not None else torch.device("cpu")
|
| 129 |
+
saved_paths = []
|
| 130 |
+
n_images = len(equi_tensors)
|
| 131 |
+
|
| 132 |
+
if n_images == 0:
|
| 133 |
+
return saved_paths
|
| 134 |
+
|
| 135 |
+
# Decide frames per image
|
| 136 |
+
if total_duration is not None:
|
| 137 |
+
assert total_duration > 0
|
| 138 |
+
seconds_per_image = total_duration / n_images
|
| 139 |
+
else:
|
| 140 |
+
seconds_per_image = duration_per_image if duration_per_image is not None else 4.0
|
| 141 |
+
|
| 142 |
+
frames_per_image = max(1, int(round(seconds_per_image * fps)))
|
| 143 |
+
|
| 144 |
+
# Calculate degrees per frame for consistent speed
|
| 145 |
+
vm = vertical_movement or {"mode": "none"}
|
| 146 |
+
vm_mode = vm.get("mode", "none")
|
| 147 |
+
horizontal_distance = abs(end_yaw_deg - start_yaw_deg)
|
| 148 |
+
degrees_per_frame = horizontal_distance / frames_per_image
|
| 149 |
+
|
| 150 |
+
# Calculate total frames for progress tracking
|
| 151 |
+
total_frames = n_images * frames_per_image
|
| 152 |
+
|
| 153 |
+
# Add extra frames for separate pole sweep if enabled
|
| 154 |
+
if vm_mode == "separate" or vm_mode == "both":
|
| 155 |
+
# Pole sweep path: level (0°) -> down (-85°) -> up (+85°) -> level (0°) = 340° total
|
| 156 |
+
vertical_distance = 340.0
|
| 157 |
+
pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))
|
| 158 |
+
total_frames += n_images * pole_frames
|
| 159 |
+
|
| 160 |
+
# Choose progress function
|
| 161 |
+
if speed_profile == "constant":
|
| 162 |
+
progress_fn = _linear_progress
|
| 163 |
+
elif speed_profile == "ease_in_out":
|
| 164 |
+
progress_fn = _ease_in_out_progress
|
| 165 |
+
else:
|
| 166 |
+
raise ValueError("speed_profile must be 'constant' or 'ease_in_out'")
|
| 167 |
+
|
| 168 |
+
frame_idx = start_frame_index
|
| 169 |
+
current_frame = 0
|
| 170 |
+
e2p_jit = e2p
|
| 171 |
+
|
| 172 |
+
yaw_start, yaw_end = start_yaw_deg, end_yaw_deg
|
| 173 |
+
|
| 174 |
+
for img_idx, e_img in enumerate(equi_tensors):
|
| 175 |
+
if verbose:
|
| 176 |
+
print(f"Processing image {img_idx + 1}/{n_images}...")
|
| 177 |
+
|
| 178 |
+
n = frames_per_image
|
| 179 |
+
prog = progress_fn(n)
|
| 180 |
+
yaw_values = [yaw_start + p * (yaw_end - yaw_start) for p in prog]
|
| 181 |
+
|
| 182 |
+
# Vertical values
|
| 183 |
+
if vm_mode == "during" or vm_mode == "both":
|
| 184 |
+
amplitude = float(vm.get("amplitude_deg", 15.0))
|
| 185 |
+
vertical_pattern = vm.get("pattern", "sine")
|
| 186 |
+
if vertical_pattern == "sine":
|
| 187 |
+
v_values = [amplitude * math.sin(2 * math.pi * p) for p in prog]
|
| 188 |
+
else:
|
| 189 |
+
v_values = [amplitude * (2 * p - 1) for p in prog]
|
| 190 |
+
else:
|
| 191 |
+
v_values = [0.0] * n
|
| 192 |
+
|
| 193 |
+
# Rotation frames
|
| 194 |
+
for i_frame in tqdm(range(n), desc=f"Image {img_idx + 1} rotation", disable=not verbose):
|
| 195 |
+
h_deg = yaw_values[i_frame]
|
| 196 |
+
v_deg = v_values[i_frame]
|
| 197 |
+
pers = e2p_jit(
|
| 198 |
+
e_img,
|
| 199 |
+
fov_deg=fov_deg,
|
| 200 |
+
h_deg=h_deg,
|
| 201 |
+
v_deg=v_deg,
|
| 202 |
+
out_hw=resolution,
|
| 203 |
+
mode=interpolation_mode,
|
| 204 |
+
channels_first=True,
|
| 205 |
+
).unsqueeze(0)
|
| 206 |
+
filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
|
| 207 |
+
path = os.path.join(out_dir, filename)
|
| 208 |
+
_save_tensor_as_image(pers, path)
|
| 209 |
+
saved_paths.append(path)
|
| 210 |
+
frame_idx += 1
|
| 211 |
+
current_frame += 1
|
| 212 |
+
|
| 213 |
+
# Optional separate pole sweep - continues from end position
|
| 214 |
+
if vm_mode == "separate" or vm_mode == "both":
|
| 215 |
+
if verbose:
|
| 216 |
+
print(f" Generating pole sweep for image {img_idx + 1}...")
|
| 217 |
+
|
| 218 |
+
# Continue from the ending yaw position
|
| 219 |
+
final_yaw = yaw_values[-1]
|
| 220 |
+
|
| 221 |
+
# Calculate frames based on angular distance to maintain constant speed
|
| 222 |
+
horizontal_distance = abs(yaw_end - yaw_start)
|
| 223 |
+
degrees_per_frame = horizontal_distance / frames_per_image
|
| 224 |
+
|
| 225 |
+
# Vertical path: 0° -> -85° -> +85° -> 0° = 340° total
|
| 226 |
+
vertical_distance = 340.0
|
| 227 |
+
pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))
|
| 228 |
+
|
| 229 |
+
if verbose:
|
| 230 |
+
print(f" Horizontal: {horizontal_distance}° in {frames_per_image} frames ({degrees_per_frame:.2f}°/frame)")
|
| 231 |
+
print(f" Vertical: {vertical_distance}° in {pole_frames} frames ({degrees_per_frame:.2f}°/frame)")
|
| 232 |
+
|
| 233 |
+
# Use linear progress for consistent speed throughout
|
| 234 |
+
pole_progress = _linear_progress(pole_frames)
|
| 235 |
+
pole_v_values = []
|
| 236 |
+
|
| 237 |
+
# Phase distances: 85° down, 170° up, 85° down
|
| 238 |
+
total_distance = 340.0
|
| 239 |
+
phase1_distance = 85.0 # Level to bottom
|
| 240 |
+
phase2_distance = 170.0 # Bottom to top
|
| 241 |
+
phase3_distance = 85.0 # Top to level
|
| 242 |
+
|
| 243 |
+
for p in pole_progress:
|
| 244 |
+
current_distance = p * total_distance
|
| 245 |
+
|
| 246 |
+
if current_distance <= phase1_distance:
|
| 247 |
+
# Phase 1: Level (0°) -> Down (-85°)
|
| 248 |
+
phase_progress = current_distance / phase1_distance
|
| 249 |
+
v_deg = 0.0 - (85.0 * phase_progress)
|
| 250 |
+
elif current_distance <= phase1_distance + phase2_distance:
|
| 251 |
+
# Phase 2: Down (-85°) -> Up (+85°)
|
| 252 |
+
phase_progress = (current_distance - phase1_distance) / phase2_distance
|
| 253 |
+
v_deg = -85.0 + (170.0 * phase_progress)
|
| 254 |
+
else:
|
| 255 |
+
# Phase 3: Up (+85°) -> Level (0°)
|
| 256 |
+
phase_progress = (current_distance - phase1_distance - phase2_distance) / phase3_distance
|
| 257 |
+
v_deg = 85.0 - (85.0 * phase_progress)
|
| 258 |
+
|
| 259 |
+
pole_v_values.append(v_deg)
|
| 260 |
+
|
| 261 |
+
for pole_idx, v_deg in tqdm(enumerate(pole_v_values), total=len(pole_v_values), desc=f"Image {img_idx + 1} pole sweep", disable=not verbose):
|
| 262 |
+
pers = e2p(
|
| 263 |
+
e_img,
|
| 264 |
+
fov_deg=fov_deg,
|
| 265 |
+
h_deg=final_yaw,
|
| 266 |
+
v_deg=v_deg,
|
| 267 |
+
out_hw=resolution,
|
| 268 |
+
mode=interpolation_mode,
|
| 269 |
+
channels_first=True,
|
| 270 |
+
)
|
| 271 |
+
filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
|
| 272 |
+
path = os.path.join(out_dir, filename)
|
| 273 |
+
_save_tensor_as_image(pers, path)
|
| 274 |
+
saved_paths.append(path)
|
| 275 |
+
frame_idx += 1
|
| 276 |
+
current_frame += 1
|
| 277 |
+
|
| 278 |
+
if verbose:
|
| 279 |
+
print(f"\nCompleted! Generated {len(saved_paths)} frames in {out_dir}")
|
| 280 |
+
|
| 281 |
+
return saved_paths
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def main():
|
| 285 |
+
"""
|
| 286 |
+
Main function - configure your parameters here
|
| 287 |
+
"""
|
| 288 |
+
# Configuration
|
| 289 |
+
IMAGE_PATHS = ["path/to/equi_image.jpg"]
|
| 290 |
+
OUTPUT_DIR = "path/to/output_frames"
|
| 291 |
+
start_idx = 0
|
| 292 |
+
|
| 293 |
+
# Frame generation settings
|
| 294 |
+
WIDTH = 1280
|
| 295 |
+
HEIGHT = 896
|
| 296 |
+
FPS = 60
|
| 297 |
+
DURATION_PER_IMAGE = 10.0
|
| 298 |
+
FOV_HORIZONTAL = 90.0169847156118
|
| 299 |
+
FOV_VERTICAL = 70
|
| 300 |
+
|
| 301 |
+
# Movement settings
|
| 302 |
+
SPEED_PROFILE = "constant" # "constant" or "ease_in_out"
|
| 303 |
+
START_YAW = 0.0
|
| 304 |
+
END_YAW = 360.0
|
| 305 |
+
|
| 306 |
+
# Vertical movement (set mode to "none" to disable)
|
| 307 |
+
VERTICAL_MOVEMENT = {
|
| 308 |
+
"mode": "separate", # "none", "during", "separate", or "both"
|
| 309 |
+
"amplitude_deg": 90.0,
|
| 310 |
+
"pattern": "sine", # "sine" or "linear"
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
# Other settings
|
| 314 |
+
INTERPOLATION_MODE = "bilinear" # "bilinear", "bicubic", or "nearest"
|
| 315 |
+
SAVE_FORMAT = "png" # "png", "jpg", "jpeg", or "bmp"
|
| 316 |
+
FILENAME_PREFIX = "sweep360"
|
| 317 |
+
DEVICE = "cuda:0"
|
| 318 |
+
|
| 319 |
+
# Load images as tensors
|
| 320 |
+
equi_tensors = []
|
| 321 |
+
for img_path in IMAGE_PATHS:
|
| 322 |
+
equi_tensors.append(load_image_to_tensor(img_path, DEVICE))
|
| 323 |
+
|
| 324 |
+
if not equi_tensors:
|
| 325 |
+
print("No images loaded. Please add your equirectangular images.")
|
| 326 |
+
return
|
| 327 |
+
|
| 328 |
+
# Generate frames
|
| 329 |
+
saved_paths = generate_frames_from_equirect(
|
| 330 |
+
equi_tensors=equi_tensors,
|
| 331 |
+
out_dir=OUTPUT_DIR,
|
| 332 |
+
resolution=(HEIGHT, WIDTH),
|
| 333 |
+
fps=FPS,
|
| 334 |
+
duration_per_image=DURATION_PER_IMAGE,
|
| 335 |
+
fov_deg=(FOV_HORIZONTAL, FOV_VERTICAL),
|
| 336 |
+
interpolation_mode=INTERPOLATION_MODE,
|
| 337 |
+
speed_profile=SPEED_PROFILE,
|
| 338 |
+
vertical_movement=VERTICAL_MOVEMENT,
|
| 339 |
+
start_yaw_deg=START_YAW,
|
| 340 |
+
end_yaw_deg=END_YAW,
|
| 341 |
+
save_format=SAVE_FORMAT,
|
| 342 |
+
filename_prefix=FILENAME_PREFIX,
|
| 343 |
+
verbose=True,
|
| 344 |
+
start_frame_index=start_idx,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
print(f"Successfully generated {len(saved_paths)} frames")
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
if __name__ == "__main__":
|
| 351 |
+
main()
|