eval_cache / evalonlyhindi_indicwav2vec_MUCS_warmup2000_s300shuff500_2143808.out
Priyanship's picture
End of training
90771c6 verified
wandb: Currently logged in as: priyanshi-pal (priyanshipal). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.17.7 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.17.6
wandb: Run data is saved locally in /scratch/elec/t405-puhe/p/palp3/MUCS/wandb/run-20240822_161651-bhazmy67
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run eval_pd2000_s300_shuff500_hindi
wandb: โญ๏ธ View project at https://wandb.ai/priyanshipal/huggingface
wandb: ๐Ÿš€ View run at https://wandb.ai/priyanshipal/huggingface/runs/bhazmy67
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of ๐Ÿค— Transformers. Use `eval_strategy` instead
warnings.warn(
Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 572 examples [00:00, 1644.16 examples/s] Generating train split: 572 examples [00:00, 1602.39 examples/s]
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:957: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/auto/feature_extraction_auto.py:329: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
/scratch/work/palp3/myenv/lib/python3.11/site-packages/accelerate/accelerator.py:488: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
max_steps is given, it will override any value given in num_train_epochs
Wav2Vec2CTCTokenizer(name_or_path='', vocab_size=149, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=True), added_tokens_decoder={
147: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
148: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False),
149: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
150: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
CHECK MODEL PARAMS Wav2Vec2ForCTC(
(wav2vec2): Wav2Vec2Model(
(feature_extractor): Wav2Vec2FeatureEncoder(
(conv_layers): ModuleList(
(0): Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(1-4): 4 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
(5-6): 2 x Wav2Vec2LayerNormConvLayer(
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(activation): GELUActivation()
)
)
)
(feature_projection): Wav2Vec2FeatureProjection(
(layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(projection): Linear(in_features=512, out_features=1024, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
)
(encoder): Wav2Vec2EncoderStableLayerNorm(
(pos_conv_embed): Wav2Vec2PositionalConvEmbedding(
(conv): ParametrizedConv1d(
1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
(padding): Wav2Vec2SamePadLayer()
(activation): GELUActivation()
)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.2, inplace=False)
(layers): ModuleList(
(0-23): 24 x Wav2Vec2EncoderLayerStableLayerNorm(
(attention): Wav2Vec2SdpaAttention(
(k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(out_proj): Linear(in_features=1024, out_features=1024, bias=True)
)
(dropout): Dropout(p=0.2, inplace=False)
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(feed_forward): Wav2Vec2FeedForward(
(intermediate_dropout): Dropout(p=0.0, inplace=False)
(intermediate_dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
(output_dense): Linear(in_features=4096, out_features=1024, bias=True)
(output_dropout): Dropout(p=0.2, inplace=False)
)
(final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(dropout): Dropout(p=0.0, inplace=False)
(lm_head): Linear(in_features=1024, out_features=151, bias=True)
)
check the eval set length 572
08/22/2024 16:17:04 - INFO - __main__ - *** Evaluate ***
/scratch/work/palp3/myenv/lib/python3.11/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:157: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
warnings.warn(
0%| | 0/36 [00:00<?, ?it/s] 6%|โ–Œ | 2/36 [00:01<00:28, 1.20it/s] 8%|โ–Š | 3/36 [00:03<00:34, 1.04s/it] 11%|โ–ˆ | 4/36 [00:04<00:42, 1.32s/it] 14%|โ–ˆโ– | 5/36 [00:06<00:43, 1.40s/it] 17%|โ–ˆโ–‹ | 6/36 [00:07<00:41, 1.39s/it] 19%|โ–ˆโ–‰ | 7/36 [00:08<00:35, 1.23s/it] 22%|โ–ˆโ–ˆโ– | 8/36 [00:09<00:27, 1.02it/s] 25%|โ–ˆโ–ˆโ–Œ | 9/36 [00:09<00:22, 1.19it/s] 28%|โ–ˆโ–ˆโ–Š | 10/36 [00:10<00:21, 1.24it/s] 31%|โ–ˆโ–ˆโ–ˆ | 11/36 [00:11<00:20, 1.21it/s] 33%|โ–ˆโ–ˆโ–ˆโ–Ž | 12/36 [00:11<00:19, 1.23it/s] 36%|โ–ˆโ–ˆโ–ˆโ–Œ | 13/36 [00:12<00:17, 1.29it/s] 39%|โ–ˆโ–ˆโ–ˆโ–‰ | 14/36 [00:13<00:14, 1.48it/s] 42%|โ–ˆโ–ˆโ–ˆโ–ˆโ– | 15/36 [00:13<00:12, 1.67it/s] 44%|โ–ˆโ–ˆโ–ˆโ–ˆโ– | 16/36 [00:13<00:10, 1.82it/s] 47%|โ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 17/36 [00:14<00:09, 1.92it/s] 50%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 18/36 [00:14<00:09, 1.85it/s] 53%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 19/36 [00:15<00:09, 1.77it/s] 56%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 20/36 [00:16<00:08, 1.83it/s] 58%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 21/36 [00:16<00:07, 1.97it/s] 61%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 22/36 [00:17<00:07, 1.97it/s] 64%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 23/36 [00:17<00:06, 1.93it/s] 67%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 24/36 [00:18<00:06, 1.91it/s] 69%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 25/36 [00:18<00:06, 1.82it/s] 72%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 26/36 [00:19<00:05, 1.85it/s] 75%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 27/36 [00:19<00:04, 1.95it/s] 78%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 28/36 [00:20<00:04, 1.62it/s] 81%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 29/36 [00:22<00:06, 1.08it/s] 83%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 30/36 [00:23<00:06, 1.08s/it] 86%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 31/36 [00:25<00:06, 1.34s/it] 89%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 32/36 [00:26<00:04, 1.12s/it] 92%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 33/36 [00:26<00:02, 1.04it/s] 94%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 34/36 [00:27<00:01, 1.21it/s] 97%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹| 35/36 [00:27<00:00, 1.36it/s] 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 36/36 [00:28<00:00, 1.64it/s] 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 36/36 [00:29<00:00, 1.21it/s]
Printing predictions for a few samples:
Sample 1:
Reference: เคนเคฎ เค‰เคจเค•เคพ เค‰เคชเคฏเฅ‹เค— เคเคธเฅ‡ เคนเฅ€ เค•เคฐ เคธเค•เคคเฅ‡ เคนเฅˆเค‚ เคฏเคพ เค†เคตเคถเฅเคฏเค•เคคเคพ เค…เคจเฅเคธเคพเคฐ เค•เฅเค› เคฌเคฆเคฒเคพเคต เค•เคฐเค•เฅ‡ เค‰เคชเคฏเฅ‹เค— เค•เคฐ เคธเค•เคคเฅ‡ เคนเฅˆเค‚
######
Prediction: mpl lauts เคฎเคœเคฆ เคนเคนเคฎ เค‰เคจเค•เคพ เค‰เคชเคฏเฅ‹เค— เฅˆเคธเฅ‡ เคนเฅ€ เค•เคฐ เคธเค•เคคเฅ‡ เคนเค‚
Sample 2:
Reference: เค…เคคเคƒ เคถเฅ€เคฐเฅเคทเค• เค‡เคธ เคคเคฐเคน เคธเฅ‡ เคœเฅ‹เคกเคผ เคธเค•เคคเฅ‡ เคนเฅˆเค‚
######
Prediction: เค… เฅ€เคฐ
Sample 3:
Reference: เคชเฅเคฐเฅ‡เคธเฅ‡เค‚เคŸเฅ‡เคถเคจ เค•เฅ‡ เค…เค‚เคค เคฎเฅ‡เค‚ เค†เคชเคจเฅ‡ เคธเฅเคฒเคพเค‡เคก เค•เฅ€ เคเค• เค•เฅ‰เคชเฅ€ เคฌเคจเคพ เคฒเฅ€ เคนเฅˆ
######
Prediction: prntation เค•เฅ‡ เค…เค‚เคค เคฎเฅ‡เค‚ เคชเคจ
Sample 4:
Reference: เคšเคฒเคฟเค เค…เคฌ เคซเฅ‹เค‚เคŸเฅเคธ เค”เคฐ เคซเฅ‹เค‚เคŸเฅเคธ เค•เฅ‹ เคซเฅ‰เคฐเฅเคฎเฅ‡เคŸ เค•เคฐเคจเฅ‡ เค•เฅ‡ เค•เฅเค› เคคเคฐเฅ€เค•เฅ‡ เคฆเฅ‡เค–เคคเฅ‡ เคนเฅˆเค‚
######
Prediction: เค• cop เคฌ เคšเคฒเคฟเค fonts เค”เคฐ fonts เค•เฅ‹ format เค•เคฐเคจเฅ‡ เค•เฅ‡ เค•เฅเค› เคคเคฐเฅ€เค•เฅ‡ เค‚เค‚
Sample 5:
Reference: เคฏเคน เคเค• เคกเคพเคฏเคฒเฅ‰เค— เคฌเฅ‰เค•เฅเคธ เค–เฅ‹เคฒเฅ‡เค—เคพ เคœเคฟเคธเคฎเฅ‡เค‚ เคนเคฎ เค…เคชเคจเฅ€ เค†เคตเคถเฅเคฏเค•เคคเคพเคจเฅเคธเคพเคฐ เคซเฅ‰เคจเฅเคŸ เคธเฅเคŸเคพเค‡เคฒ เค”เคฐ เคธเคพเค‡เคœเคผ เคธเฅ‡เคŸ เค•เคฐ เคธเค•เคคเฅ‡ เคนเฅˆเค‚
######
Prediction: เคฆ เค•เค‚เคฏเคน เคเค• dialog boxเคธ เค–เฅ‹เคฒเฅ‡เค—เคพ เคœเคฟเคธเคฎเฅ‡เค‚ เคนเคฎ เค…เคชเคจเฅ€ เคตเฅเคฏเค•
last Reference string เคฏเคน เคธเฅเค•เฅเคฐเคฟเคชเฅเคŸ เคฒเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค…เคจเฅเคตเคพเคฆเคฟเคค เคนเฅˆ เค†เคˆเค†เคˆเคŸเฅ€ เคฎเฅเค‚เคฌเคˆ เค•เฅ€ เค“เคฐ เคธเฅ‡ เคฎเฅˆเค‚ เคฐเคตเคฟ เค•เฅเคฎเคพเคฐ เค…เคฌ เค†เคชเคธเฅ‡ เคตเคฟเคฆเคพ เคฒเฅ‡เคคเคพ เคนเฅ‚เคเคนเคฎเคธเฅ‡ เคœเฅเคกเคผเคจเฅ‡ เค•เฅ‡ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
last prediction string lเคคเคพ เคฆเฅเคตเคพเคฐเคพ เค…เคจเฅเคตเคพเคฆเคฟเคค เคนเฅˆ เค†เคˆเค†เคˆเคŸเฅ€ เคฎเฅเคฎเค‚เคฌเคˆ เค•เฅ€ เค“เคฐ เคธเฅ‡ เคฎเฅˆเค‚ เคฐเคตเคฟ เค•เฅเคฎเคพเคฐ เค…เคฌ เค†เคชเคธเฅ‡ เคตเคฟเคฆเคพ เคฒเฅ‡เคคเคพ เคนเฅ‚เค เคนเคฎเคธเฅ‡ เคœเคกเคผเคจเฅ‡ เค•เฅ‡ เคฒเคฟเค เคงเคจเฅเคฏเคตเคพเคฆ
***** eval metrics *****
eval_cer = 0.4677
eval_loss = 2.2164
eval_model_preparation_time = 0.0046
eval_runtime = 0:00:40.56
eval_samples = 572
eval_samples_per_second = 14.1
eval_steps_per_second = 0.887
eval_wer = 0.5669
model.safetensors: 0%| | 0.00/1.26G [00:00<?, ?B/s]
Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]
training_args.bin: 0%| | 0.00/5.43k [00:00<?, ?B/s] model.safetensors: 0%| | 1.38M/1.26G [00:00<05:30, 3.81MB/s] model.safetensors: 0%| | 4.39M/1.26G [00:00<02:07, 9.89MB/s] training_args.bin: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 5.43k/5.43k [00:00<00:00, 10.5kB/s]
model.safetensors: 0%| | 5.87M/1.26G [00:00<02:13, 9.39MB/s] model.safetensors: 1%| | 7.60M/1.26G [00:00<02:03, 10.1MB/s] model.safetensors: 1%| | 9.85M/1.26G [00:00<01:44, 12.0MB/s] model.safetensors: 1%| | 13.0M/1.26G [00:01<01:18, 16.0MB/s] model.safetensors: 1%|โ– | 16.0M/1.26G [00:01<02:36, 7.99MB/s] model.safetensors: 2%|โ– | 20.6M/1.26G [00:01<01:37, 12.7MB/s] model.safetensors: 2%|โ– | 22.9M/1.26G [00:01<01:29, 13.9MB/s] model.safetensors: 2%|โ– | 26.0M/1.26G [00:02<01:23, 14.8MB/s] model.safetensors: 2%|โ– | 28.0M/1.26G [00:02<01:26, 14.2MB/s] model.safetensors: 2%|โ– | 29.9M/1.26G [00:02<01:23, 14.8MB/s] model.safetensors: 3%|โ–Ž | 32.0M/1.26G [00:02<02:26, 8.42MB/s] model.safetensors: 4%|โ–Ž | 47.3M/1.26G [00:03<00:44, 27.5MB/s] model.safetensors: 4%|โ– | 52.5M/1.26G [00:03<01:00, 19.9MB/s] model.safetensors: 4%|โ– | 56.6M/1.26G [00:03<00:58, 20.7MB/s] model.safetensors: 5%|โ– | 60.1M/1.26G [00:04<01:33, 12.8MB/s] model.safetensors: 5%|โ– | 62.7M/1.26G [00:04<01:25, 14.0MB/s] model.safetensors: 5%|โ–Œ | 65.2M/1.26G [00:05<02:08, 9.34MB/s] model.safetensors: 5%|โ–Œ | 68.2M/1.26G [00:05<01:49, 10.9MB/s] model.safetensors: 6%|โ–Œ | 71.2M/1.26G [00:05<01:38, 12.1MB/s] model.safetensors: 6%|โ–Œ | 74.7M/1.26G [00:05<02:04, 9.57MB/s] model.safetensors: 6%|โ–Œ | 76.2M/1.26G [00:06<02:01, 9.79MB/s] model.safetensors: 6%|โ–‹ | 79.3M/1.26G [00:06<01:37, 12.1MB/s] model.safetensors: 6%|โ–‹ | 81.0M/1.26G [00:06<02:31, 7.79MB/s] model.safetensors: 8%|โ–Š | 95.4M/1.26G [00:06<00:49, 23.4MB/s] model.safetensors: 8%|โ–Š | 100M/1.26G [00:07<00:59, 19.5MB/s] model.safetensors: 9%|โ–‰ | 111M/1.26G [00:07<00:37, 30.8MB/s] model.safetensors: 9%|โ–‰ | 117M/1.26G [00:07<00:42, 26.9MB/s] model.safetensors: 10%|โ–ˆ | 128M/1.26G [00:08<00:46, 24.3MB/s] model.safetensors: 11%|โ–ˆโ– | 143M/1.26G [00:08<00:28, 38.9MB/s] model.safetensors: 12%|โ–ˆโ– | 150M/1.26G [00:08<00:40, 27.6MB/s] model.safetensors: 12%|โ–ˆโ– | 156M/1.26G [00:09<01:02, 17.7MB/s] model.safetensors: 13%|โ–ˆโ–Ž | 160M/1.26G [00:09<00:59, 18.5MB/s] model.safetensors: 13%|โ–ˆโ–Ž | 163M/1.26G [00:10<01:20, 13.7MB/s] model.safetensors: 14%|โ–ˆโ– | 175M/1.26G [00:10<00:46, 23.4MB/s] model.safetensors: 14%|โ–ˆโ– | 180M/1.26G [00:10<00:48, 22.4MB/s] model.safetensors: 15%|โ–ˆโ–Œ | 192M/1.26G [00:10<00:32, 32.9MB/s] model.safetensors: 16%|โ–ˆโ–Œ | 198M/1.26G [00:11<00:40, 26.6MB/s] model.safetensors: 16%|โ–ˆโ–‹ | 208M/1.26G [00:11<00:41, 25.3MB/s] model.safetensors: 18%|โ–ˆโ–Š | 223M/1.26G [00:11<00:26, 39.6MB/s] model.safetensors: 18%|โ–ˆโ–Š | 231M/1.26G [00:11<00:31, 32.5MB/s] model.safetensors: 19%|โ–ˆโ–‰ | 240M/1.26G [00:12<00:34, 29.7MB/s] model.safetensors: 20%|โ–ˆโ–ˆ | 255M/1.26G [00:12<00:22, 43.9MB/s] model.safetensors: 21%|โ–ˆโ–ˆ | 263M/1.26G [00:13<00:35, 28.0MB/s] model.safetensors: 22%|โ–ˆโ–ˆโ– | 272M/1.26G [00:14<00:56, 17.6MB/s] model.safetensors: 23%|โ–ˆโ–ˆโ–Ž | 287M/1.26G [00:14<00:35, 27.2MB/s] model.safetensors: 23%|โ–ˆโ–ˆโ–Ž | 295M/1.26G [00:14<00:36, 26.7MB/s] model.safetensors: 24%|โ–ˆโ–ˆโ– | 304M/1.26G [00:15<00:41, 22.9MB/s] model.safetensors: 25%|โ–ˆโ–ˆโ–Œ | 319M/1.26G [00:15<00:27, 34.3MB/s] model.safetensors: 26%|โ–ˆโ–ˆโ–Œ | 327M/1.26G [00:15<00:31, 29.3MB/s] model.safetensors: 27%|โ–ˆโ–ˆโ–‹ | 336M/1.26G [00:16<00:36, 25.2MB/s] model.safetensors: 28%|โ–ˆโ–ˆโ–Š | 352M/1.26G [00:16<00:24, 37.5MB/s] model.safetensors: 28%|โ–ˆโ–ˆโ–Š | 359M/1.26G [00:16<00:26, 33.7MB/s] model.safetensors: 29%|โ–ˆโ–ˆโ–‰ | 368M/1.26G [00:16<00:30, 29.3MB/s] model.safetensors: 30%|โ–ˆโ–ˆโ–ˆ | 384M/1.26G [00:16<00:20, 42.9MB/s] model.safetensors: 31%|โ–ˆโ–ˆโ–ˆ | 391M/1.26G [00:17<00:30, 28.6MB/s] model.safetensors: 32%|โ–ˆโ–ˆโ–ˆโ– | 400M/1.26G [00:17<00:32, 26.6MB/s] model.safetensors: 33%|โ–ˆโ–ˆโ–ˆโ–Ž | 415M/1.26G [00:18<00:21, 39.3MB/s] model.safetensors: 34%|โ–ˆโ–ˆโ–ˆโ–Ž | 423M/1.26G [00:18<00:25, 32.8MB/s] model.safetensors: 34%|โ–ˆโ–ˆโ–ˆโ– | 432M/1.26G [00:18<00:28, 29.3MB/s] model.safetensors: 35%|โ–ˆโ–ˆโ–ˆโ–Œ | 447M/1.26G [00:18<00:19, 42.7MB/s] model.safetensors: 36%|โ–ˆโ–ˆโ–ˆโ–Œ | 455M/1.26G [00:19<00:23, 34.4MB/s] model.safetensors: 37%|โ–ˆโ–ˆโ–ˆโ–‹ | 464M/1.26G [00:19<00:25, 31.1MB/s] model.safetensors: 38%|โ–ˆโ–ˆโ–ˆโ–Š | 479M/1.26G [00:19<00:17, 45.0MB/s] model.safetensors: 39%|โ–ˆโ–ˆโ–ˆโ–Š | 487M/1.26G [00:20<00:20, 38.4MB/s] model.safetensors: 39%|โ–ˆโ–ˆโ–ˆโ–‰ | 496M/1.26G [00:20<00:24, 31.2MB/s] model.safetensors: 41%|โ–ˆโ–ˆโ–ˆโ–ˆ | 511M/1.26G [00:20<00:16, 45.3MB/s] model.safetensors: 41%|โ–ˆโ–ˆโ–ˆโ–ˆ | 519M/1.26G [00:20<00:19, 37.3MB/s] model.safetensors: 42%|โ–ˆโ–ˆโ–ˆโ–ˆโ– | 528M/1.26G [00:21<00:22, 31.9MB/s] model.safetensors: 43%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 544M/1.26G [00:21<00:15, 46.4MB/s] model.safetensors: 44%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 551M/1.26G [00:21<00:18, 38.5MB/s] model.safetensors: 44%|โ–ˆโ–ˆโ–ˆโ–ˆโ– | 560M/1.26G [00:22<00:22, 30.6MB/s] model.safetensors: 46%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 575M/1.26G [00:22<00:15, 44.5MB/s] model.safetensors: 46%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 583M/1.26G [00:22<00:18, 36.3MB/s] model.safetensors: 47%|โ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 592M/1.26G [00:23<00:22, 30.0MB/s] model.safetensors: 48%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 607M/1.26G [00:23<00:15, 43.6MB/s] model.safetensors: 49%|โ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 615M/1.26G [00:23<00:18, 34.5MB/s] model.safetensors: 49%|โ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 624M/1.26G [00:24<00:21, 30.3MB/s] model.safetensors: 51%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 639M/1.26G [00:24<00:14, 44.1MB/s] model.safetensors: 51%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 647M/1.26G [00:24<00:16, 38.0MB/s] model.safetensors: 52%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 656M/1.26G [00:24<00:17, 34.6MB/s] model.safetensors: 53%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 671M/1.26G [00:24<00:11, 49.5MB/s] model.safetensors: 54%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 679M/1.26G [00:25<00:14, 38.9MB/s] model.safetensors: 54%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 688M/1.26G [00:25<00:18, 31.7MB/s] model.safetensors: 56%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 703M/1.26G [00:25<00:12, 45.9MB/s] model.safetensors: 56%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 711M/1.26G [00:26<00:16, 33.9MB/s] model.safetensors: 57%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 720M/1.26G [00:26<00:19, 27.7MB/s] model.safetensors: 58%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 735M/1.26G [00:26<00:13, 40.3MB/s] model.safetensors: 59%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 743M/1.26G [00:27<00:15, 34.3MB/s] model.safetensors: 60%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 752M/1.26G [00:27<00:16, 30.7MB/s] model.safetensors: 61%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 764M/1.26G [00:27<00:12, 41.2MB/s] model.safetensors: 61%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 771M/1.26G [00:27<00:14, 34.4MB/s] model.safetensors: 62%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 783M/1.26G [00:28<00:10, 45.7MB/s] model.safetensors: 63%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 791M/1.26G [00:28<00:14, 32.2MB/s] model.safetensors: 63%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 800M/1.26G [00:28<00:14, 30.9MB/s] model.safetensors: 65%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 815M/1.26G [00:28<00:09, 45.6MB/s] model.safetensors: 65%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 823M/1.26G [00:29<00:11, 37.1MB/s] model.safetensors: 66%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 832M/1.26G [00:29<00:15, 27.9MB/s] model.safetensors: 67%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 847M/1.26G [00:29<00:10, 41.1MB/s] model.safetensors: 68%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 855M/1.26G [00:30<00:11, 35.1MB/s] model.safetensors: 68%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 864M/1.26G [00:30<00:12, 32.4MB/s] model.safetensors: 70%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 880M/1.26G [00:30<00:08, 46.8MB/s] model.safetensors: 70%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 887M/1.26G [00:30<00:09, 37.7MB/s] model.safetensors: 71%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 896M/1.26G [00:31<00:10, 33.7MB/s] model.safetensors: 72%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 911M/1.26G [00:31<00:07, 48.4MB/s] model.safetensors: 73%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 919M/1.26G [00:31<00:09, 37.2MB/s] model.safetensors: 74%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 928M/1.26G [00:32<00:10, 31.9MB/s] model.safetensors: 75%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 944M/1.26G [00:32<00:06, 46.3MB/s] model.safetensors: 75%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 951M/1.26G [00:32<00:08, 36.4MB/s] model.safetensors: 76%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 960M/1.26G [00:33<00:09, 32.1MB/s] model.safetensors: 77%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 975M/1.26G [00:33<00:06, 46.4MB/s] model.safetensors: 78%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 983M/1.26G [00:33<00:07, 39.7MB/s] model.safetensors: 79%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 992M/1.26G [00:33<00:07, 34.3MB/s] model.safetensors: 80%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.01G/1.26G [00:33<00:05, 49.2MB/s] model.safetensors: 80%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.02G/1.26G [00:34<00:06, 40.2MB/s] model.safetensors: 81%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.02G/1.26G [00:34<00:07, 32.1MB/s] model.safetensors: 82%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.04G/1.26G [00:34<00:04, 46.4MB/s] model.safetensors: 83%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.05G/1.26G [00:35<00:06, 34.2MB/s] model.safetensors: 84%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.06G/1.26G [00:36<00:12, 16.6MB/s] model.safetensors: 85%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.07G/1.26G [00:36<00:07, 25.6MB/s] model.safetensors: 85%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.08G/1.26G [00:36<00:07, 25.4MB/s] model.safetensors: 86%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.09G/1.26G [00:37<00:06, 25.5MB/s] model.safetensors: 87%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.10G/1.26G [00:37<00:04, 37.8MB/s] model.safetensors: 88%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.11G/1.26G [00:37<00:04, 34.2MB/s] model.safetensors: 89%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.12G/1.26G [00:38<00:04, 29.6MB/s] model.safetensors: 90%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.14G/1.26G [00:38<00:02, 43.2MB/s] model.safetensors: 91%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.14G/1.26G [00:38<00:03, 33.5MB/s] model.safetensors: 91%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 1.15G/1.26G [00:38<00:03, 30.2MB/s] model.safetensors: 92%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 1.17G/1.26G [00:39<00:02, 43.9MB/s] model.safetensors: 93%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž| 1.18G/1.26G [00:39<00:02, 35.1MB/s] model.safetensors: 94%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 1.18G/1.26G [00:39<00:02, 31.7MB/s] model.safetensors: 95%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ| 1.20G/1.26G [00:39<00:01, 45.8MB/s] model.safetensors: 96%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ| 1.21G/1.26G [00:40<00:01, 34.7MB/s] model.safetensors: 96%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹| 1.22G/1.26G [00:40<00:01, 33.3MB/s] model.safetensors: 97%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹| 1.23G/1.26G [00:40<00:00, 46.2MB/s] model.safetensors: 98%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š| 1.24G/1.26G [00:41<00:00, 39.7MB/s] model.safetensors: 99%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰| 1.25G/1.26G [00:41<00:00, 33.1MB/s] model.safetensors: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 1.26G/1.26G [00:42<00:00, 29.9MB/s]
Upload 2 LFS files: 50%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1/2 [00:42<00:42, 42.54s/it] Upload 2 LFS files: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2/2 [00:42<00:00, 21.27s/it]