Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fraud-detection
|
| 4 |
+
- random-forest
|
| 5 |
+
- sklearn
|
| 6 |
+
library_name: sklearn
|
| 7 |
+
pipeline_tag: tabular-classification
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Random Forest Fraud Detection Model
|
| 11 |
+
|
| 12 |
+
This model uses Random Forest classification to detect potential fraud based on various account and transaction features.
|
| 13 |
+
|
| 14 |
+
## Model Description
|
| 15 |
+
|
| 16 |
+
- **Input Features:**
|
| 17 |
+
- Account Age (months)
|
| 18 |
+
- Frequency of credential changes (per year)
|
| 19 |
+
- Return to Order ratio
|
| 20 |
+
- VPN/Temp Mail usage (binary)
|
| 21 |
+
- Credit Score
|
| 22 |
+
|
| 23 |
+
- **Output:** Binary classification (Fraud/Not Fraud)
|
| 24 |
+
- **Type:** Random Forest Classifier
|
| 25 |
+
|
| 26 |
+
## Usage
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
import joblib
|
| 30 |
+
import numpy as np
|
| 31 |
+
|
| 32 |
+
# Load model and scaler
|
| 33 |
+
model = joblib.load('random_forest_model.joblib')
|
| 34 |
+
scaler = joblib.load('rf_scaler.joblib')
|
| 35 |
+
|
| 36 |
+
# Prepare input (example)
|
| 37 |
+
input_data = np.array([[25, 0.5, 0.4, 0, 800]])
|
| 38 |
+
|
| 39 |
+
# Scale input
|
| 40 |
+
scaled_input = scaler.transform(input_data)
|
| 41 |
+
|
| 42 |
+
# Get prediction
|
| 43 |
+
prediction = model.predict(scaled_input)
|
| 44 |
+
probability = model.predict_proba(scaled_input)
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## Limitations and Bias
|
| 48 |
+
|
| 49 |
+
This model should be used as part of a larger fraud detection system and not in isolation.
|