File size: 31,867 Bytes
56ba507 4dd9d64 56ba507 2fdd377 56ba507 d326944 56ba507 354d8c8 56ba507 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
---
language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:640000
- loss:Distillation
base_model: NeuML/bert-hash-nano
datasets:
- lightonai/ms-marco-en-bge-gemma
pipeline_tag: sentence-similarity
library_name: PyLate
license: apache-2.0
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: ColBERT MUVERA Nano
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.3
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.4
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.48
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.54
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.3
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.14666666666666664
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.10800000000000001
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07200000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.12999999999999998
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.19833333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.24
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.295
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.25693689476232956
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.3689126984126984
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.20238579189860822
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.66
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.82
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.9
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.92
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.66
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5666666666666665
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.524
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.48200000000000004
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.05242687651506869
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.13921550887445522
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.19747421384152156
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3240079111162478
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5626087795584744
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7505
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.43170467867134016
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.84
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.86
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.92
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.29333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.184
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09999999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.7566666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.8133333333333332
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.84
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.89
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8297799319515553
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8250476190476193
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8113438403701564
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.4
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.52
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.66
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.4
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.22666666666666668
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.18799999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.11199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.2461904761904762
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.3277936507936508
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.4542380952380952
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5184047619047619
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4359941442854233
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5049126984126984
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.36500352221028065
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.94
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.4599999999999999
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.30799999999999994
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.16999999999999996
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.4
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.69
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.77
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.85
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7791724226460205
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8793333333333332
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7004123402170076
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.64
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.78
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.21333333333333332
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14400000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07800000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.44
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.64
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.72
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.78
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6037947687284007
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5473333333333332
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5593945067344082
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.62
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.66
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3933333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.33199999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.26
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.042699664136408834
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.07806895769271134
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.09327844593663599
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.11679808931654996
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.32747074296711476
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5297222222222222
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.14001894101433573
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.36
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.58
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.36
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.19333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14800000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.08199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.35
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.56
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.69
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.77
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5666668175637105
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5109365079365079
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5060753330396947
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: MaxSim_accuracy@1
value: 0.86
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.9
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.92
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.94
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.86
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.32666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.21599999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.11599999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.784
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.8313333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.8713333333333333
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.898
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8685515910259487
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8838888888888888
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8518536903500825
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.38
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.5
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.62
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.38
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.18799999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.128
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08066666666666666
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.14566666666666667
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.19466666666666668
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.26366666666666666
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.26913925437260855
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.4848809523809524
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.19279409328239955
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: MaxSim_accuracy@1
value: 0.14
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.32
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.42
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.56
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.14
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.10666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.08400000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.056000000000000015
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.14
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.32
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.42
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.56
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3381955845251465
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.2689920634920634
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.27812414648450906
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: MaxSim_accuracy@1
value: 0.6
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.72
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.8
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2533333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.17600000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.092
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.565
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.7
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.785
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.81
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6965110171594289
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6668888888888889
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.659209595959596
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: MaxSim_accuracy@1
value: 0.673469387755102
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.9591836734693877
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1.0
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.673469387755102
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.7074829931972788
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6612244897959185
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.5204081632653061
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.04513010438618095
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.14053118239478446
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.21284594516135155
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3318018815073785
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5876998904974655
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.826530612244898
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.41690806080588444
name: Maxsim Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.5271899529042385
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6722448979591836
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7446153846153846
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8046153846153847
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5271899529042385
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3169858712715855
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.25086342229199377
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.17449293563579277
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.31021388112011294
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4295596897247899
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.49914128462904644
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5698214854239696
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5478862953879712
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6190676783533925
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.47040219546448486
name: Maxsim Map@100
---
# ColBERT MUVERA Nano
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [neuml/bert-hash-nano](https://huggingface.co/neuml/bert-hash-nano) on the [msmarco-en-bge-gemma unnormalized split](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504).
## Usage (txtai)
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
_Note: txtai 9.0+ is required for late interaction model support_
```python
import txtai
embeddings = txtai.Embeddings(
path="neuml/colbert-muvera-nano",
content=True
)
embeddings.index(documents())
# Run a query
embeddings.search("query to run")
```
Late interaction models excel as reranker pipelines.
```python
from txtai.pipeline import Reranker, Similarity
similarity = Similarity(path="neuml/colbert-muvera-nano", lateencode=True)
ranker = Reranker(embeddings, similarity)
ranker("query to run")
```
## Usage (PyLate)
Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate).
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="neuml/colbert-muvera-nano",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertHashModel
(1): Dense({'in_features': 128, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Evaluation
### BEIR Subset
The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py).
Scores reported are `ndcg@10` and grouped into the following three categories.
#### FULL multi-vector maxsim
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3165 | 0.1497 | 0.6456 | 0.3706 |
| [ColBERT MUVERA Femto](https://huggingface.co/neuml/colbert-muvera-femto) | 0.2M | 0.2513 | 0.0870 | 0.4710 | 0.2698 |
| [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.3005 | 0.1117 | 0.6452 | 0.3525 |
| [**ColBERT MUVERA Nano**](https://huggingface.co/neuml/colbert-muvera-nano) | **0.9M** | **0.3180** | **0.1262** | **0.6576** | **0.3673** |
| [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.3235 | 0.1244 | 0.6676 | 0.3718 |
#### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3025 | 0.1538 | 0.6278 | 0.3614 |
| [ColBERT MUVERA Femto](https://huggingface.co/neuml/colbert-muvera-femto) | 0.2M | 0.2316 | 0.0858 | 0.4641 | 0.2605 |
| [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.2821 | 0.1004 | 0.6090 | 0.3305 |
| [**ColBERT MUVERA Nano**](https://huggingface.co/neuml/colbert-muvera-nano) | **0.9M** | **0.2996** | **0.1201** | **0.6249** | **0.3482** |
| [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.3095 | 0.1228 | 0.6464 | 0.3596 |
#### MUVERA encoding only
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|:------------------|:-----------|:---------|:---------|:--------|:--------|
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.2356 | 0.1229 | 0.5002 | 0.2862 |
| [ColBERT MUVERA Femto](https://huggingface.co/neuml/colbert-muvera-femto) | 0.2M | 0.1851 | 0.0411 | 0.3518 | 0.1927 |
| [ColBERT MUVERA Pico](https://huggingface.co/neuml/colbert-muvera-pico) | 0.4M | 0.1926 | 0.0564 | 0.4424 | 0.2305 |
| [**ColBERT MUVERA Nano**](https://huggingface.co/neuml/colbert-muvera-nano) | **0.9M** | **0.2355** | **0.0807** | **0.4904** | **0.2689** |
| [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.2348 | 0.0882 | 0.4875 | 0.2702 |
_Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._
As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more.
**This model packs a punch into 950K parameters. It's the same architecture as the 4M parameter model with the modified embeddings layer taking the parameter county down. It even beats the original ColBERT v2 model on a couple of the benchmarks.**
### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with <code>pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator</code>
| Metric | Value |
|:--------------------|:-----------|
| MaxSim_accuracy@1 | 0.5272 |
| MaxSim_accuracy@3 | 0.6722 |
| MaxSim_accuracy@5 | 0.7446 |
| MaxSim_accuracy@10 | 0.8046 |
| MaxSim_precision@1 | 0.5272 |
| MaxSim_precision@3 | 0.317 |
| MaxSim_precision@5 | 0.2509 |
| MaxSim_precision@10 | 0.1745 |
| MaxSim_recall@1 | 0.3102 |
| MaxSim_recall@3 | 0.4296 |
| MaxSim_recall@5 | 0.4991 |
| MaxSim_recall@10 | 0.5698 |
| **MaxSim_ndcg@10** | **0.5479** |
| MaxSim_mrr@10 | 0.6191 |
| MaxSim_map@100 | 0.4704 |
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 0.0003
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0003
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.0.2
- PyLate: 1.3.2
- Transformers: 4.57.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
|