adding a usecase example
Browse files- README.md +70 -6
- example_use.ipynb +469 -0
README.md
CHANGED
|
@@ -118,13 +118,15 @@ Where:
|
|
| 118 |
</tbody>
|
| 119 |
</table>
|
| 120 |
|
| 121 |
-
> e.g. `rec` is the model trained on an oversampled dataset for balance, with batches in an arbitrary order (`r`), and with CoT reasoning (`c`).
|
| 122 |
|
| 123 |
### Example Usage
|
| 124 |
|
|
|
|
|
|
|
| 125 |
```python
|
| 126 |
import torch
|
| 127 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 128 |
from peft import PeftModel
|
| 129 |
|
| 130 |
# Choose which adapter to load
|
|
@@ -132,24 +134,86 @@ target_adapter_name = "rec" # Among the following six configurations : "odc", "o
|
|
| 132 |
|
| 133 |
# Load the base model
|
| 134 |
base_model_name = "Qwen/Qwen3-4B"
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
# Load the specific adapter by name from the repository
|
| 139 |
adapter_repo_id = "Naela00/ToxiFrench"
|
| 140 |
model = PeftModel.from_pretrained(
|
| 141 |
model,
|
| 142 |
adapter_repo_id,
|
| 143 |
-
|
| 144 |
)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
```
|
| 148 |
|
| 149 |
---
|
| 150 |
|
| 151 |
## License
|
| 152 |
|
|
|
|
|
|
|
| 153 |
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 154 |
|
| 155 |
---
|
|
|
|
| 118 |
</tbody>
|
| 119 |
</table>
|
| 120 |
|
| 121 |
+
> e.g. `rec` is the model trained on an oversampled dataset for balance (`e`), with batches in an arbitrary order (`r`), and with CoT reasoning (`c`).
|
| 122 |
|
| 123 |
### Example Usage
|
| 124 |
|
| 125 |
+
You can find an example in [this notebook](example_use.ipynb).
|
| 126 |
+
|
| 127 |
```python
|
| 128 |
import torch
|
| 129 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 130 |
from peft import PeftModel
|
| 131 |
|
| 132 |
# Choose which adapter to load
|
|
|
|
| 134 |
|
| 135 |
# Load the base model
|
| 136 |
base_model_name = "Qwen/Qwen3-4B"
|
| 137 |
+
|
| 138 |
+
# For small GPUs, use 4-bit quantization
|
| 139 |
+
bnb_config = BitsAndBytesConfig(**{
|
| 140 |
+
"load_in_4bit": True,
|
| 141 |
+
"bnb_4bit_use_double_quant": True,
|
| 142 |
+
"bnb_4bit_quant_type": "nf4",
|
| 143 |
+
"bnb_4bit_compute_dtype": torch.float16
|
| 144 |
+
})
|
| 145 |
+
|
| 146 |
+
# Load tokenizer
|
| 147 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 148 |
+
base_model_name,
|
| 149 |
+
use_fast=True,
|
| 150 |
+
trust_remote_code=True
|
| 151 |
+
)
|
| 152 |
+
tokenizer.padding_side = 'left'
|
| 153 |
+
|
| 154 |
+
# Load model
|
| 155 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 156 |
+
base_model_name,
|
| 157 |
+
quantization_config=bnb_config,
|
| 158 |
+
trust_remote_code=True,
|
| 159 |
+
sliding_window=None,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Resize the model's token embeddings to match the tokenizer's vocabulary size
|
| 163 |
+
model_embedding_size = model.get_input_embeddings().weight.size(0)
|
| 164 |
+
tokenizer_vocab_size = len(tokenizer)
|
| 165 |
+
model.resize_token_embeddings(tokenizer_vocab_size)
|
| 166 |
|
| 167 |
# Load the specific adapter by name from the repository
|
| 168 |
adapter_repo_id = "Naela00/ToxiFrench"
|
| 169 |
model = PeftModel.from_pretrained(
|
| 170 |
model,
|
| 171 |
adapter_repo_id,
|
| 172 |
+
subfolder=target_adapter_name # Among the following six configurations : "odc", "oeb", "oec", "rdc", "reb", "rec"
|
| 173 |
)
|
| 174 |
|
| 175 |
+
# Inference
|
| 176 |
+
message_to_analyze = "Je suis vraiment dรฉรงu par ce film, c'รฉtait nul !"
|
| 177 |
+
prompt = f"Message:\n{message_to_analyze}\n\nAnalyse:\n"
|
| 178 |
+
if "c" in target_adapter_name:
|
| 179 |
+
prompt += "<think>\nExplication :\n" # If using CoT, add the reasoning part
|
| 180 |
+
|
| 181 |
+
max_new_tokens: int = 1024
|
| 182 |
+
do_sample: bool = True
|
| 183 |
+
temperature: float = 0.7
|
| 184 |
+
top_p: float = 0.9
|
| 185 |
+
top_k: int = 50
|
| 186 |
+
repetition_penalty: float = 1.1
|
| 187 |
+
|
| 188 |
+
inputs = tokenizer(
|
| 189 |
+
prompt,
|
| 190 |
+
return_tensors="pt",
|
| 191 |
+
padding=True,
|
| 192 |
+
truncation=True
|
| 193 |
+
).to(model.device)
|
| 194 |
+
|
| 195 |
+
default_generation_kwargs = {
|
| 196 |
+
"max_new_tokens": max_new_tokens,
|
| 197 |
+
"do_sample": do_sample,
|
| 198 |
+
"temperature": temperature,
|
| 199 |
+
"top_p": top_p,
|
| 200 |
+
"top_k": top_k,
|
| 201 |
+
"repetition_penalty": repetition_penalty,
|
| 202 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
outputs = model.generate(**inputs, **default_generation_kwargs)
|
| 206 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 207 |
+
|
| 208 |
+
print(generated_text)
|
| 209 |
```
|
| 210 |
|
| 211 |
---
|
| 212 |
|
| 213 |
## License
|
| 214 |
|
| 215 |
+
[](./LICENSE)
|
| 216 |
+
|
| 217 |
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 218 |
|
| 219 |
---
|
example_use.ipynb
ADDED
|
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "5946df15",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Example of use of ToxiFrench model"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "markdown",
|
| 13 |
+
"id": "209da6d2",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"## Libraries"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": 1,
|
| 22 |
+
"id": "e421addd",
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"import torch\n",
|
| 27 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
|
| 28 |
+
"from peft import PeftModel\n",
|
| 29 |
+
"from rich.console import Console\n",
|
| 30 |
+
"from rich.panel import Panel\n",
|
| 31 |
+
"import os "
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "markdown",
|
| 36 |
+
"id": "332b3f5c",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"source": [
|
| 39 |
+
"## Global settings and variables"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": 2,
|
| 45 |
+
"id": "a14bba57",
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"# If you are using a proxy, set it up here (optional, you can comment these lines if not needed)\n",
|
| 50 |
+
"os.environ[\"HTTP_PROXY\"] = \"socks5h://127.0.0.1:1080\"\n",
|
| 51 |
+
"os.environ[\"HTTPS_PROXY\"] = \"socks5h://127.0.0.1:1080\"\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"# Choose which adapter to load\n",
|
| 54 |
+
"target_adapter_name = \"rec\" # Among the following six configurations : \"odc\", \"oeb\", \"oec\", \"rdc\", \"reb\", \"rec\"\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"# Load the base model\n",
|
| 57 |
+
"base_model_name = \"Qwen/Qwen3-4B\""
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": 3,
|
| 63 |
+
"id": "b2a86231",
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"console = Console()"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 4,
|
| 73 |
+
"id": "3bbaa5bf",
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"bnb_config = BitsAndBytesConfig(**{\n",
|
| 78 |
+
" \"load_in_4bit\": True,\n",
|
| 79 |
+
" \"bnb_4bit_use_double_quant\": True,\n",
|
| 80 |
+
" \"bnb_4bit_quant_type\": \"nf4\",\n",
|
| 81 |
+
" \"bnb_4bit_compute_dtype\": torch.float16\n",
|
| 82 |
+
" })"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "markdown",
|
| 87 |
+
"id": "560465f5",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"source": [
|
| 90 |
+
"## Load the model"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 5,
|
| 96 |
+
"id": "44494b9f",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 101 |
+
" base_model_name,\n",
|
| 102 |
+
" use_fast=True,\n",
|
| 103 |
+
" trust_remote_code=True\n",
|
| 104 |
+
" )\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"if tokenizer.pad_token is None:\n",
|
| 107 |
+
" tokenizer.pad_token = tokenizer.eos_token\n",
|
| 108 |
+
" print(\"Tokenizer `pad_token` was None, set to `eos_token`.\")\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"tokenizer.padding_side = 'left' "
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": 6,
|
| 116 |
+
"id": "4b90a147",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [
|
| 119 |
+
{
|
| 120 |
+
"data": {
|
| 121 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 122 |
+
"model_id": "6796b5b76bc2493daf8fdc0169de053f",
|
| 123 |
+
"version_major": 2,
|
| 124 |
+
"version_minor": 0
|
| 125 |
+
},
|
| 126 |
+
"text/plain": [
|
| 127 |
+
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"output_type": "display_data"
|
| 132 |
+
}
|
| 133 |
+
],
|
| 134 |
+
"source": [
|
| 135 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 136 |
+
" base_model_name,\n",
|
| 137 |
+
" quantization_config=bnb_config,\n",
|
| 138 |
+
" trust_remote_code=True,\n",
|
| 139 |
+
" sliding_window=None,\n",
|
| 140 |
+
" )\n",
|
| 141 |
+
"if model.generation_config.pad_token_id is None and tokenizer.pad_token_id is not None:\n",
|
| 142 |
+
" model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
|
| 143 |
+
" print(\"Model `generation_config.pad_token_id` set from tokenizer.\")"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": 7,
|
| 149 |
+
"id": "5c105265",
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [
|
| 152 |
+
{
|
| 153 |
+
"data": {
|
| 154 |
+
"text/html": [
|
| 155 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #808000; text-decoration-color: #808000\">Warning: Vocab size mismatch.</span>Model embeddings: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">151936</span>, Tokenizer vocab: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">151669</span>\n",
|
| 156 |
+
"</pre>\n"
|
| 157 |
+
],
|
| 158 |
+
"text/plain": [
|
| 159 |
+
"\u001b[33mWarning: Vocab size mismatch.\u001b[0mModel embeddings: \u001b[1;36m151936\u001b[0m, Tokenizer vocab: \u001b[1;36m151669\u001b[0m\n"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"output_type": "display_data"
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"data": {
|
| 167 |
+
"text/html": [
|
| 168 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Resizing model token embeddings to match tokenizer<span style=\"color: #808000; text-decoration-color: #808000\">...</span>\n",
|
| 169 |
+
"</pre>\n"
|
| 170 |
+
],
|
| 171 |
+
"text/plain": [
|
| 172 |
+
"Resizing model token embeddings to match tokenizer\u001b[33m...\u001b[0m\n"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"output_type": "display_data"
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"data": {
|
| 180 |
+
"text/html": [
|
| 181 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #008000; text-decoration-color: #008000; font-weight: bold\">Resized model embeddings to: </span><span style=\"color: #008000; text-decoration-color: #008000; font-weight: bold\">151669</span>\n",
|
| 182 |
+
"</pre>\n"
|
| 183 |
+
],
|
| 184 |
+
"text/plain": [
|
| 185 |
+
"\u001b[1;32mResized model embeddings to: \u001b[0m\u001b[1;32m151669\u001b[0m\n"
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"output_type": "display_data"
|
| 190 |
+
}
|
| 191 |
+
],
|
| 192 |
+
"source": [
|
| 193 |
+
"special_tokens_to_add = {\n",
|
| 194 |
+
" \"additional_special_tokens\": [\n",
|
| 195 |
+
" ]\n",
|
| 196 |
+
" }\n",
|
| 197 |
+
"tokenizer.add_special_tokens(special_tokens_to_add)\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"model_embedding_size = model.get_input_embeddings().weight.size(0)\n",
|
| 200 |
+
"tokenizer_vocab_size = len(tokenizer)\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"if model_embedding_size != tokenizer_vocab_size:\n",
|
| 203 |
+
" console.print(f\"[yellow]Warning: Vocab size mismatch.[/yellow]\"\n",
|
| 204 |
+
" f\"Model embeddings: {model_embedding_size}, \"\n",
|
| 205 |
+
" f\"Tokenizer vocab: {tokenizer_vocab_size}\")\n",
|
| 206 |
+
" console.print(\"Resizing model token embeddings to match tokenizer...\")\n",
|
| 207 |
+
" model.resize_token_embeddings(tokenizer_vocab_size)\n",
|
| 208 |
+
"\n",
|
| 209 |
+
" # Verify the resize\n",
|
| 210 |
+
" new_embedding_size = model.get_input_embeddings().weight.size(0)\n",
|
| 211 |
+
" console.print(f\"[bold green]Resized model embeddings to: {new_embedding_size}[/bold green]\")\n",
|
| 212 |
+
"else:\n",
|
| 213 |
+
" console.print(\"Model embedding size and tokenizer vocabulary size are already aligned.\")"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": 8,
|
| 219 |
+
"id": "ed574fee",
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [
|
| 222 |
+
{
|
| 223 |
+
"name": "stdout",
|
| 224 |
+
"output_type": "stream",
|
| 225 |
+
"text": [
|
| 226 |
+
"Successfully loaded the 'rec' adapter!\n"
|
| 227 |
+
]
|
| 228 |
+
}
|
| 229 |
+
],
|
| 230 |
+
"source": [
|
| 231 |
+
"# Load the specific adapter by name from the repository\n",
|
| 232 |
+
"adapter_repo_id = \"Naela00/ToxiFrench\"\n",
|
| 233 |
+
"model = PeftModel.from_pretrained(\n",
|
| 234 |
+
" model,\n",
|
| 235 |
+
" adapter_repo_id,\n",
|
| 236 |
+
" subfolder=target_adapter_name\n",
|
| 237 |
+
")\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"print(f\"Successfully loaded the '{target_adapter_name}' adapter!\")"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "markdown",
|
| 244 |
+
"id": "7e4e92f5",
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"source": [
|
| 247 |
+
"## Example of inference"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"execution_count": 9,
|
| 253 |
+
"id": "74b03044",
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"outputs": [],
|
| 256 |
+
"source": [
|
| 257 |
+
"prompt = \"Message:\\nputain mais elle est vraiment grand remplacรฉe vot ville\\n\\nAnalyse:\\n\"\n",
|
| 258 |
+
"if \"c\" in target_adapter_name:\n",
|
| 259 |
+
" prompt += \"<think>\\nExplication :\\n\""
|
| 260 |
+
]
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"cell_type": "code",
|
| 264 |
+
"execution_count": 10,
|
| 265 |
+
"id": "74e4a114",
|
| 266 |
+
"metadata": {},
|
| 267 |
+
"outputs": [],
|
| 268 |
+
"source": [
|
| 269 |
+
"max_new_tokens: int = 1024\n",
|
| 270 |
+
"do_sample: bool = True\n",
|
| 271 |
+
"temperature: float = 0.7\n",
|
| 272 |
+
"top_p: float = 0.9\n",
|
| 273 |
+
"top_k: int = 50\n",
|
| 274 |
+
"repetition_penalty: float = 1.1"
|
| 275 |
+
]
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"cell_type": "code",
|
| 279 |
+
"execution_count": 11,
|
| 280 |
+
"id": "6d73a27e",
|
| 281 |
+
"metadata": {},
|
| 282 |
+
"outputs": [],
|
| 283 |
+
"source": [
|
| 284 |
+
"inputs = tokenizer(\n",
|
| 285 |
+
" prompt,\n",
|
| 286 |
+
" return_tensors=\"pt\",\n",
|
| 287 |
+
" padding=True,\n",
|
| 288 |
+
" truncation=True\n",
|
| 289 |
+
").to(model.device)\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"default_generation_kwargs = {\n",
|
| 292 |
+
" \"max_new_tokens\": max_new_tokens,\n",
|
| 293 |
+
" \"do_sample\": do_sample,\n",
|
| 294 |
+
" \"temperature\": temperature,\n",
|
| 295 |
+
" \"top_p\": top_p,\n",
|
| 296 |
+
" \"top_k\": top_k,\n",
|
| 297 |
+
" \"repetition_penalty\": repetition_penalty,\n",
|
| 298 |
+
" \"eos_token_id\": tokenizer.eos_token_id,\n",
|
| 299 |
+
"}\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"outputs = model.generate(**inputs, **default_generation_kwargs)\n",
|
| 302 |
+
"generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False)"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": 12,
|
| 308 |
+
"id": "8f5c58a9",
|
| 309 |
+
"metadata": {},
|
| 310 |
+
"outputs": [
|
| 311 |
+
{
|
| 312 |
+
"data": {
|
| 313 |
+
"text/html": [
|
| 314 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #00ff00; text-decoration-color: #00ff00\">โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ </span><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">Model Output</span><span style=\"color: #00ff00; text-decoration-color: #00ff00\"> โโโโโโโโโโโโโโโโโโโ๏ฟฝ๏ฟฝโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ</span>\n",
|
| 315 |
+
"</pre>\n"
|
| 316 |
+
],
|
| 317 |
+
"text/plain": [
|
| 318 |
+
"\u001b[92mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ \u001b[0m\u001b[1;35mModel Output\u001b[0m\u001b[92m โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m\n"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
"metadata": {},
|
| 322 |
+
"output_type": "display_data"
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"data": {
|
| 326 |
+
"text/html": [
|
| 327 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"</pre>\n"
|
| 330 |
+
],
|
| 331 |
+
"text/plain": [
|
| 332 |
+
"\n",
|
| 333 |
+
"\n"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"output_type": "display_data"
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"data": {
|
| 341 |
+
"text/html": [
|
| 342 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ</span> Generated Text <span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ</span>\n",
|
| 343 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Message: โ</span>\n",
|
| 344 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ putain mais elle est vraiment grand remplacรฉe vot ville โ</span>\n",
|
| 345 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 346 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Analyse: โ</span>\n",
|
| 347 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ <think> โ</span>\n",
|
| 348 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Explication : โ</span>\n",
|
| 349 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ **Sujet du message :** Remplacement d'une personne dans une situation. โ</span>\n",
|
| 350 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 351 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ **Rรฉsumรฉ et explication :** L'auteur exprime son indignation ou sa surprise face ร un remplacement, en โ</span>\n",
|
| 352 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ utilisant le terme \"grand\" qui pourrait indiquer une grande importance. Le contexte n'est pas prรฉcisรฉ. โ</span>\n",
|
| 353 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ </think> โ</span>\n",
|
| 354 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ <think> โ</span>\n",
|
| 355 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Tons : โ</span>\n",
|
| 356 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Les tons perรงus sont : โ</span>\n",
|
| 357 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 358 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ 1. **Indignรฉ (certitude รฉlevรฉe)** - L'utilisation de ยซ putain ยป montre une frustration claire face au โ</span>\n",
|
| 359 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ remplacement. โ</span>\n",
|
| 360 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ 2. **Surpris (certitude modรฉrรฉe)** - L'expression ยซ mais elle est vraiment ยป suggรจre une surprise quant ร la โ</span>\n",
|
| 361 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ situation. โ</span>\n",
|
| 362 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ 3. **Informel (certitude รฉlevรฉe)** - Le langage familier et l'absence de formalitรฉ renforcent ce ton. โ</span>\n",
|
| 363 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 364 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Doutes sur la signification exacte des termes, notamment ยซ grand ยป, pouvant indiquer une opinion personnelle. โ</span>\n",
|
| 365 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ </think> โ</span>\n",
|
| 366 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ <think> โ</span>\n",
|
| 367 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Labels : โ</span>\n",
|
| 368 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ S0/H0/V0/R0/A0/I2 โ</span>\n",
|
| 369 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 370 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Justification : โ</span>\n",
|
| 371 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Le message contient une vulgaritรฉ lรฉgรจre avec un ton informel, sans allusion sexuelle ni violence, et manifeste โ</span>\n",
|
| 372 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ une critique moqueuse ou dรฉsapprobatrice sans intention hostile directe. โ</span>\n",
|
| 373 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ </think> โ</span>\n",
|
| 374 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ <think> โ</span>\n",
|
| 375 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Score de toxicitรฉ : โ</span>\n",
|
| 376 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ 4/10 โ</span>\n",
|
| 377 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 378 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Justification : โ</span>\n",
|
| 379 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ Vulgaritรฉ et condescendance prรฉsentes, mais sans haine explicite ni incitation grave. Ton moqueur peut heurter โ</span>\n",
|
| 380 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ certaines sensibilitรฉs, mais reste limitรฉ. โ</span>\n",
|
| 381 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ </think> โ</span>\n",
|
| 382 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 383 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ En conclusion, ce message est-il toxique ? โ</span>\n",
|
| 384 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ โ</span>\n",
|
| 385 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โ non<|im_end|> โ</span>\n",
|
| 386 |
+
"<span style=\"color: #c0c0c0; text-decoration-color: #c0c0c0; background-color: #000000; font-weight: bold\">โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ</span>\n",
|
| 387 |
+
"</pre>\n"
|
| 388 |
+
],
|
| 389 |
+
"text/plain": [
|
| 390 |
+
"\u001b[1;37;40mโญโ\u001b[0m\u001b[1;37;40mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m Generated Text \u001b[1;37;40mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m\u001b[1;37;40mโโฎ\u001b[0m\n",
|
| 391 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mMessage:\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 392 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mputain mais elle est vraiment grand remplacรฉe vot ville\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 393 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 394 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mAnalyse:\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 395 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m<think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 396 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mExplication :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 397 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m**Sujet du message :** Remplacement d'une personne dans une situation.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 398 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 399 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m**Rรฉsumรฉ et explication :** L'auteur exprime son indignation ou sa surprise face ร un remplacement, en \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 400 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mutilisant le terme \"grand\" qui pourrait indiquer une grande importance. Le contexte n'est pas prรฉcisรฉ.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 401 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m</think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 402 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m<think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 403 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mTons :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 404 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mLes tons perรงus sont :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 405 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 406 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m1. **Indignรฉ (certitude รฉlevรฉe)** - L'utilisation de ยซ putain ยป montre une frustration claire face au \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 407 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mremplacement.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 408 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m2. **Surpris (certitude modรฉrรฉe)** - L'expression ยซ mais elle est vraiment ยป suggรจre une surprise quant ร la \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 409 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40msituation.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 410 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m3. **Informel (certitude รฉlevรฉe)** - Le langage familier et l'absence de formalitรฉ renforcent ce ton.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 411 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 412 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mDoutes sur la signification exacte des termes, notamment ยซ grand ยป, pouvant indiquer une opinion personnelle.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 413 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m</think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 414 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m<think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 415 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mLabels :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 416 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mS0/H0/V0/R0/A0/I2\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 417 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 418 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mJustification :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 419 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mLe message contient une vulgaritรฉ lรฉgรจre avec un ton informel, sans allusion sexuelle ni violence, et manifeste\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 420 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mune critique moqueuse ou dรฉsapprobatrice sans intention hostile directe.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 421 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m</think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 422 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m<think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 423 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mScore de toxicitรฉ :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 424 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m4/10\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 425 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 426 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mJustification :\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 427 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mVulgaritรฉ et condescendance prรฉsentes, mais sans haine explicite ni incitation grave. Ton moqueur peut heurter \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 428 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mcertaines sensibilitรฉs, mais reste limitรฉ.\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 429 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m</think>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 430 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 431 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mEn conclusion, ce message est-il toxique ?\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 432 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 433 |
+
"\u001b[1;37;40mโ\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mnon<|im_end|>\u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40m \u001b[0m\u001b[1;37;40mโ\u001b[0m\n",
|
| 434 |
+
"\u001b[1;37;40mโฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ\u001b[0m\n"
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
"metadata": {},
|
| 438 |
+
"output_type": "display_data"
|
| 439 |
+
}
|
| 440 |
+
],
|
| 441 |
+
"source": [
|
| 442 |
+
"console.rule(\"[bold magenta]Model Output\")\n",
|
| 443 |
+
"console.print('\\n')\n",
|
| 444 |
+
"console.print(Panel.fit(generated_text, title=\"Generated Text\", style=\"bold white on black\"))"
|
| 445 |
+
]
|
| 446 |
+
}
|
| 447 |
+
],
|
| 448 |
+
"metadata": {
|
| 449 |
+
"kernelspec": {
|
| 450 |
+
"display_name": "SJTU",
|
| 451 |
+
"language": "python",
|
| 452 |
+
"name": "python3"
|
| 453 |
+
},
|
| 454 |
+
"language_info": {
|
| 455 |
+
"codemirror_mode": {
|
| 456 |
+
"name": "ipython",
|
| 457 |
+
"version": 3
|
| 458 |
+
},
|
| 459 |
+
"file_extension": ".py",
|
| 460 |
+
"mimetype": "text/x-python",
|
| 461 |
+
"name": "python",
|
| 462 |
+
"nbconvert_exporter": "python",
|
| 463 |
+
"pygments_lexer": "ipython3",
|
| 464 |
+
"version": "3.10.13"
|
| 465 |
+
}
|
| 466 |
+
},
|
| 467 |
+
"nbformat": 4,
|
| 468 |
+
"nbformat_minor": 5
|
| 469 |
+
}
|