Mac
commited on
Commit
Β·
8046c68
1
Parent(s):
15eb8ca
Update README with Hugging Face metadata and full project description
Browse files
README.md
CHANGED
|
@@ -1,182 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# CodeLLaMA-Linux-BugFix
|
| 2 |
|
| 3 |
-
A
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
- **Training a specialized model** using QLoRA for efficient fine-tuning
|
| 11 |
-
- **Generating Git diff patches** that can be applied to fix bugs
|
| 12 |
-
- **Providing evaluation metrics** to assess model performance
|
| 13 |
|
| 14 |
-
##
|
| 15 |
|
| 16 |
-
|
| 17 |
-
- **
|
| 18 |
-
- **
|
| 19 |
-
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
- **LoRA Config**: r=64, alpha=16, dropout=0.1
|
| 23 |
-
- **Training**: 3 epochs, batch size 64, learning rate 2e-4
|
| 24 |
-
- **Memory Optimization**: Gradient checkpointing, mixed precision training
|
| 25 |
|
| 26 |
## π Dataset
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
###
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
### Dataset Statistics
|
| 55 |
-
- **Training Data**: 100K samples (`training_data_100k.jsonl`)
|
| 56 |
-
- **Format**: JSONL (one JSON object per line)
|
| 57 |
-
- **Source**: Linux kernel Git repository
|
| 58 |
|
| 59 |
## π Quick Start
|
| 60 |
|
| 61 |
-
###
|
|
|
|
| 62 |
```bash
|
| 63 |
pip install -r requirements.txt
|
| 64 |
```
|
| 65 |
|
| 66 |
-
### 1. Build Dataset
|
|
|
|
| 67 |
```bash
|
| 68 |
cd dataset_builder
|
| 69 |
python extract_linux_bugfixes.py
|
| 70 |
python format_for_training.py
|
| 71 |
```
|
| 72 |
|
| 73 |
-
### 2.
|
|
|
|
| 74 |
```bash
|
| 75 |
cd train
|
| 76 |
python train_codellama_qlora_linux_bugfix.py
|
| 77 |
```
|
| 78 |
|
| 79 |
-
### 3.
|
|
|
|
| 80 |
```bash
|
| 81 |
cd evaluate
|
| 82 |
python evaluate_linux_bugfix_model.py
|
| 83 |
```
|
| 84 |
|
|
|
|
|
|
|
| 85 |
## π Project Structure
|
| 86 |
|
| 87 |
```
|
| 88 |
CodeLLaMA-Linux-BugFix/
|
| 89 |
-
βββ dataset_builder/
|
| 90 |
-
β βββ extract_linux_bugfixes.py
|
| 91 |
-
β βββ extract_linux_bugfixes_parallel.py
|
| 92 |
β βββ format_for_training.py
|
| 93 |
-
βββ dataset/
|
| 94 |
β βββ training_data_100k.jsonl
|
| 95 |
β βββ training_data_prompt_completion.jsonl
|
| 96 |
-
βββ train/
|
| 97 |
-
β βββ train_codellama_qlora_linux_bugfix.py
|
| 98 |
β βββ train_codellama_qlora_simple.py
|
| 99 |
β βββ download_codellama_model.py
|
| 100 |
-
β βββ output/
|
| 101 |
-
βββ evaluate/
|
| 102 |
-
β βββ evaluate_linux_bugfix_model.py
|
| 103 |
-
β βββ test_samples.jsonl
|
| 104 |
-
β βββ output/
|
| 105 |
-
βββ requirements.txt
|
| 106 |
```
|
| 107 |
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
- **QLoRA**: Reduces memory requirements by 75% while maintaining performance
|
| 112 |
-
- **4-bit Quantization**: Enables training on consumer hardware
|
| 113 |
-
- **Gradient Checkpointing**: Optimizes memory usage during training
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
-
- **BLEU Score**: Measures translation quality
|
| 122 |
-
- **ROUGE Score**: Evaluates text generation accuracy
|
| 123 |
-
- **Comprehensive Metrics**: JSON and CSV output formats
|
| 124 |
|
| 125 |
-
##
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
2. **Code Review**: Suggest fixes during development
|
| 131 |
-
3. **Learning**: Study patterns in Linux kernel bug fixes
|
| 132 |
-
4. **Research**: Advance automated software repair techniques
|
| 133 |
|
| 134 |
-
##
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
-
- **Base**: CodeLLaMA-7B-Instruct with instruction tuning
|
| 145 |
-
- **Adapter**: LoRA layers for efficient fine-tuning
|
| 146 |
-
- **Output**: Generates Git diff format patches
|
| 147 |
|
| 148 |
-
###
|
| 149 |
-
1. **Data Preprocessing**: Extract and clean commit data
|
| 150 |
-
2. **Tokenization**: Convert to model input format
|
| 151 |
-
3. **QLoRA Training**: Efficient parameter-efficient fine-tuning
|
| 152 |
-
4. **Checkpointing**: Save model states for evaluation
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
## π€ Contributing
|
| 160 |
|
| 161 |
-
1. Fork
|
| 162 |
-
2. Create a
|
| 163 |
-
3.
|
| 164 |
-
4.
|
| 165 |
-
|
|
|
|
| 166 |
|
| 167 |
## π License
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
| 170 |
|
| 171 |
## π Acknowledgments
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
|
| 178 |
## π References
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- codellama
|
| 5 |
+
- linux
|
| 6 |
+
- bugfix
|
| 7 |
+
- lora
|
| 8 |
+
- qlora
|
| 9 |
+
- git-diff
|
| 10 |
+
base_model: codellama/CodeLLaMA-7b-Instruct-hf
|
| 11 |
+
model_type: LlamaForCausalLM
|
| 12 |
+
library_name: peft
|
| 13 |
+
pipeline_tag: text-generation
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
# CodeLLaMA-Linux-BugFix
|
| 17 |
|
| 18 |
+
A fine-tuned version of `CodeLLaMA-7B-Instruct`, designed specifically for Linux kernel bug fixing using QLoRA (Quantized Low-Rank Adaptation). The model learns to generate Git diff patches based on buggy C code and commit messages.
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## π― Overview
|
| 23 |
|
| 24 |
+
This project targets automated Linux kernel bug fixing by:
|
| 25 |
|
| 26 |
+
- **Mining real commit data** from the kernel Git history
|
| 27 |
+
- **Training a specialized QLoRA model** on diff-style fixes
|
| 28 |
+
- **Generating Git patches** in response to bug-prone code
|
| 29 |
+
- **Evaluating results** using BLEU, ROUGE, and human inspection
|
| 30 |
|
| 31 |
+
---
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
## π§ Model Configuration
|
| 34 |
|
| 35 |
+
- **Base model**: `CodeLLaMA-7B-Instruct`
|
| 36 |
+
- **Fine-tuning method**: QLoRA with 4-bit quantization
|
| 37 |
+
- **Training setup**:
|
| 38 |
+
- LoRA r=64, alpha=16, dropout=0.1
|
| 39 |
+
- Batch size: 64, LR: 2e-4, Epochs: 3
|
| 40 |
+
- Mixed precision (bfloat16), gradient checkpointing
|
| 41 |
+
- **Hardware**: Optimized for NVIDIA H200 GPUs
|
| 42 |
|
| 43 |
+
---
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
## π Dataset
|
| 46 |
|
| 47 |
+
Custom dataset extracted from Linux kernel Git history.
|
| 48 |
+
|
| 49 |
+
### Filtering Criteria
|
| 50 |
+
Bug-fix commits containing:
|
| 51 |
+
`fix`, `bug`, `crash`, `memory`, `null`, `panic`, `overflow`, `race`, `corruption`, etc.
|
| 52 |
+
|
| 53 |
+
### Structure
|
| 54 |
+
- Language: C (`.c`, `.h`)
|
| 55 |
+
- Context: 10 lines before/after the change
|
| 56 |
+
- Format:
|
| 57 |
+
|
| 58 |
+
```json
|
| 59 |
+
{
|
| 60 |
+
"input": {
|
| 61 |
+
"original code": "C code snippet with bug",
|
| 62 |
+
"instruction": "Commit message or fix description"
|
| 63 |
+
},
|
| 64 |
+
"output": {
|
| 65 |
+
"diff codes": "Git diff showing the fix"
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
````
|
| 69 |
+
|
| 70 |
+
* **File**: `training_data_100k.jsonl` (100,000 samples)
|
| 71 |
+
|
| 72 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
## π Quick Start
|
| 75 |
|
| 76 |
+
### Install dependencies
|
| 77 |
+
|
| 78 |
```bash
|
| 79 |
pip install -r requirements.txt
|
| 80 |
```
|
| 81 |
|
| 82 |
+
### 1. Build the Dataset
|
| 83 |
+
|
| 84 |
```bash
|
| 85 |
cd dataset_builder
|
| 86 |
python extract_linux_bugfixes.py
|
| 87 |
python format_for_training.py
|
| 88 |
```
|
| 89 |
|
| 90 |
+
### 2. Fine-tune the Model
|
| 91 |
+
|
| 92 |
```bash
|
| 93 |
cd train
|
| 94 |
python train_codellama_qlora_linux_bugfix.py
|
| 95 |
```
|
| 96 |
|
| 97 |
+
### 3. Run Evaluation
|
| 98 |
+
|
| 99 |
```bash
|
| 100 |
cd evaluate
|
| 101 |
python evaluate_linux_bugfix_model.py
|
| 102 |
```
|
| 103 |
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
## π Project Structure
|
| 107 |
|
| 108 |
```
|
| 109 |
CodeLLaMA-Linux-BugFix/
|
| 110 |
+
βββ dataset_builder/
|
| 111 |
+
β βββ extract_linux_bugfixes.py
|
| 112 |
+
β βββ extract_linux_bugfixes_parallel.py
|
| 113 |
β βββ format_for_training.py
|
| 114 |
+
βββ dataset/
|
| 115 |
β βββ training_data_100k.jsonl
|
| 116 |
β βββ training_data_prompt_completion.jsonl
|
| 117 |
+
βββ train/
|
| 118 |
+
β βββ train_codellama_qlora_linux_bugfix.py
|
| 119 |
β βββ train_codellama_qlora_simple.py
|
| 120 |
β βββ download_codellama_model.py
|
| 121 |
+
β βββ output/
|
| 122 |
+
βββ evaluate/
|
| 123 |
+
β βββ evaluate_linux_bugfix_model.py
|
| 124 |
+
β βββ test_samples.jsonl
|
| 125 |
+
β βββ output/
|
| 126 |
+
βββ requirements.txt
|
| 127 |
```
|
| 128 |
|
| 129 |
+
---
|
| 130 |
|
| 131 |
+
## π§© Features
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
* π§ **Efficient Fine-tuning**: QLoRA + 4-bit quant = massive memory savings
|
| 134 |
+
* π§ **Real-world commits**: From actual Linux kernel development
|
| 135 |
+
* π‘ **Context-aware**: Code context extraction around bug lines
|
| 136 |
+
* π» **Output-ready**: Generates valid Git-style diffs
|
| 137 |
|
| 138 |
+
---
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
## π Evaluation Metrics
|
| 141 |
|
| 142 |
+
* **BLEU**: Translation-style match to reference diffs
|
| 143 |
+
* **ROUGE**: Overlap in fix content
|
| 144 |
+
* **Human Evaluation**: Subjective patch quality
|
| 145 |
|
| 146 |
+
---
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
## π§ͺ Use Cases
|
| 149 |
|
| 150 |
+
* Automated kernel bug fixing
|
| 151 |
+
* Code review assistance
|
| 152 |
+
* Teaching/debugging kernel code
|
| 153 |
+
* Research in automated program repair (APR)
|
| 154 |
|
| 155 |
+
---
|
| 156 |
|
| 157 |
+
## π¬ Technical Highlights
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
### Memory & Speed Optimizations
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
* 4-bit quantization (NF4)
|
| 162 |
+
* Gradient checkpointing
|
| 163 |
+
* Mixed precision (bfloat16)
|
| 164 |
+
* Gradient accumulation
|
| 165 |
+
|
| 166 |
+
---
|
| 167 |
|
| 168 |
## π€ Contributing
|
| 169 |
|
| 170 |
+
1. Fork this repo
|
| 171 |
+
2. Create a branch
|
| 172 |
+
3. Add your feature or fix
|
| 173 |
+
4. Submit a PR π
|
| 174 |
+
|
| 175 |
+
---
|
| 176 |
|
| 177 |
## π License
|
| 178 |
|
| 179 |
+
MIT License β see `LICENSE` file for details.
|
| 180 |
+
|
| 181 |
+
---
|
| 182 |
|
| 183 |
## π Acknowledgments
|
| 184 |
|
| 185 |
+
* Meta for CodeLLaMA
|
| 186 |
+
* Hugging Face for Transformers + PEFT
|
| 187 |
+
* The Linux kernel community for open access to commit data
|
| 188 |
+
* Microsoft for introducing LoRA
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
|
| 192 |
## π References
|
| 193 |
|
| 194 |
+
* [CodeLLaMA (Meta, 2023)](https://arxiv.org/abs/2308.12950)
|
| 195 |
+
* [QLoRA (Dettmers et al., 2023)](https://arxiv.org/abs/2305.14314)
|
| 196 |
+
* [LoRA (Hu et al., 2021)](https://arxiv.org/abs/2106.09685)
|