--- license: mit tags: - anomaly-detection - efficientad - mvtec-ad - cable --- # EfficientAD - Cable EfficientAD model for detecting bent wires, cable swaps, and cut insulation in cables ## Model Details - **Architecture**: EfficientAD (Teacher-Student-Autoencoder) - **Model Size**: Medium (512-dimensional features) - **Dataset**: MVTec AD - Cable - **AU-ROC**: 94.2% - **Training**: Custom training on Apple Silicon (MPS) ## Files - `teacher.pth`: Pre-trained teacher network (31MB) - `student.pth`: Trained student network (44MB) - `autoencoder.pth`: Trained autoencoder (4.2MB) ## Usage ```python import torch # Load models teacher = torch.load('teacher.pth') student = torch.load('student.pth') autoencoder = torch.load('autoencoder.pth') ``` ## Citation ```bibtex @article{efficientad2023, title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies}, author={Batzner, Kilian and Heckler, Lars and König, Rebecca}, journal={arXiv preprint arXiv:2303.14535}, year={2023} } ``` Generated with Lumina Tech Platform