Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- anomaly-detection
|
| 5 |
+
- efficientad
|
| 6 |
+
- mvtec-ad
|
| 7 |
+
- cable
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# EfficientAD - Cable
|
| 11 |
+
|
| 12 |
+
EfficientAD model for detecting bent wires, cable swaps, and cut insulation in cables
|
| 13 |
+
|
| 14 |
+
## Model Details
|
| 15 |
+
|
| 16 |
+
- **Architecture**: EfficientAD (Teacher-Student-Autoencoder)
|
| 17 |
+
- **Model Size**: Medium (512-dimensional features)
|
| 18 |
+
- **Dataset**: MVTec AD - Cable
|
| 19 |
+
- **AU-ROC**: 94.2%
|
| 20 |
+
- **Training**: Custom training on Apple Silicon (MPS)
|
| 21 |
+
|
| 22 |
+
## Files
|
| 23 |
+
|
| 24 |
+
- `teacher.pth`: Pre-trained teacher network (31MB)
|
| 25 |
+
- `student.pth`: Trained student network (44MB)
|
| 26 |
+
- `autoencoder.pth`: Trained autoencoder (4.2MB)
|
| 27 |
+
|
| 28 |
+
## Usage
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
|
| 33 |
+
# Load models
|
| 34 |
+
teacher = torch.load('teacher.pth')
|
| 35 |
+
student = torch.load('student.pth')
|
| 36 |
+
autoencoder = torch.load('autoencoder.pth')
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## Citation
|
| 40 |
+
|
| 41 |
+
```bibtex
|
| 42 |
+
@article{efficientad2023,
|
| 43 |
+
title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
|
| 44 |
+
author={Batzner, Kilian and Heckler, Lars and König, Rebecca},
|
| 45 |
+
journal={arXiv preprint arXiv:2303.14535},
|
| 46 |
+
year={2023}
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
Generated with Lumina Tech Platform
|