MSherbinii commited on
Commit
4dddf4c
·
verified ·
1 Parent(s): 9e77dba

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - anomaly-detection
5
+ - efficientad
6
+ - mvtec-ad
7
+ - cable
8
+ ---
9
+
10
+ # EfficientAD - Cable
11
+
12
+ EfficientAD model for detecting bent wires, cable swaps, and cut insulation in cables
13
+
14
+ ## Model Details
15
+
16
+ - **Architecture**: EfficientAD (Teacher-Student-Autoencoder)
17
+ - **Model Size**: Medium (512-dimensional features)
18
+ - **Dataset**: MVTec AD - Cable
19
+ - **AU-ROC**: 94.2%
20
+ - **Training**: Custom training on Apple Silicon (MPS)
21
+
22
+ ## Files
23
+
24
+ - `teacher.pth`: Pre-trained teacher network (31MB)
25
+ - `student.pth`: Trained student network (44MB)
26
+ - `autoencoder.pth`: Trained autoencoder (4.2MB)
27
+
28
+ ## Usage
29
+
30
+ ```python
31
+ import torch
32
+
33
+ # Load models
34
+ teacher = torch.load('teacher.pth')
35
+ student = torch.load('student.pth')
36
+ autoencoder = torch.load('autoencoder.pth')
37
+ ```
38
+
39
+ ## Citation
40
+
41
+ ```bibtex
42
+ @article{efficientad2023,
43
+ title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
44
+ author={Batzner, Kilian and Heckler, Lars and König, Rebecca},
45
+ journal={arXiv preprint arXiv:2303.14535},
46
+ year={2023}
47
+ }
48
+ ```
49
+
50
+ Generated with Lumina Tech Platform