Upload local model
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- chat_template.jinja +54 -0
- config.json +59 -0
- generation_config.json +9 -0
- global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +347 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +207 -0
- trainer_state.json +1634 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"dtype": "bfloat16",
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 3584,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 18944,
|
| 12 |
+
"layer_types": [
|
| 13 |
+
"full_attention",
|
| 14 |
+
"full_attention",
|
| 15 |
+
"full_attention",
|
| 16 |
+
"full_attention",
|
| 17 |
+
"full_attention",
|
| 18 |
+
"full_attention",
|
| 19 |
+
"full_attention",
|
| 20 |
+
"full_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention"
|
| 41 |
+
],
|
| 42 |
+
"max_position_embeddings": 131072,
|
| 43 |
+
"max_window_layers": 28,
|
| 44 |
+
"model_type": "qwen2",
|
| 45 |
+
"num_attention_heads": 28,
|
| 46 |
+
"num_hidden_layers": 28,
|
| 47 |
+
"num_key_value_heads": 4,
|
| 48 |
+
"pad_token_id": 151643,
|
| 49 |
+
"rms_norm_eps": 1e-06,
|
| 50 |
+
"rope_scaling": null,
|
| 51 |
+
"rope_theta": 1000000.0,
|
| 52 |
+
"sliding_window": null,
|
| 53 |
+
"tie_word_embeddings": false,
|
| 54 |
+
"transformers_version": "4.56.0",
|
| 55 |
+
"use_cache": true,
|
| 56 |
+
"use_mrope": false,
|
| 57 |
+
"use_sliding_window": false,
|
| 58 |
+
"vocab_size": 152064
|
| 59 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token_id": [
|
| 3 |
+
151643,
|
| 4 |
+
151645
|
| 5 |
+
],
|
| 6 |
+
"max_new_tokens": 2048,
|
| 7 |
+
"pad_token_id": 151643,
|
| 8 |
+
"transformers_version": "4.56.0"
|
| 9 |
+
}
|
global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8dec47ce5c36f5861278d8fa3550255f7c1ed1704a7eab622a01a36d209c537
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebdf827cce49de1e2a3ec05036ef91a9f5a56c0848e9b29995cbf4f57b9e104e
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6e03f0f28ac5e946cff861ba30f8777e653b4d5d0de2c7c321e20e520c4426f
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae103fa2cfee763e8007e6b50bc5dbcc21f6c291b8cbc9db57c93d84b6466498
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fba3a38d4779affff9c66d86fec0d9f6845725936dbd699f713080ff7871d84a
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d467d08c484f4d5b055efaa002bcf0077db15f71431a261170e45bca8366253
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e13b98a67f10cb4fca83f00790cd408d4603f53b137a163987b5174b6b504095
|
| 3 |
+
size 11423430241
|
global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8060479e37d774e4b14902346f13cf84ffde2fc7a04233d29d9d56fd01db12c
|
| 3 |
+
size 11423430241
|
global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa07e61ef77d6c1b883ab3dbd00a92945b9b92a6433694e43b3fa85050373712
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e7bc581a25c738a0465d87a57902c556711d6cbcee4221b1b65dd9957e10eae
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:877024cb6c31cb889dce0a3d6d7d6732e1440ef20d43d59ca6aff1ef7818c308
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed40849c7931a4ec6ad2f317ce7b0d6c01846470503aca95af7733bb6e8ba0bd
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6a07b25e6c32f38f948ed53820b24f7ca64b3d13daeb59d21f95914d67c39cd
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e395099f2d78bd8e8c8a6230de23e058ba303ce351b6f5ab3b31e92f3b035a09
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49dcb786c4de28fe9bab7a3fbb4cc825a0953c407ee312b6db63de487343cca6
|
| 3 |
+
size 166752
|
global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c9791b6dcda1d2edf3491c5c9900975dd97751706d5e69e2bb733ea4bbcda9c
|
| 3 |
+
size 166752
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2000
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32d70a4e0ae59658e283e853cb3ea75f8c3ffe2fe4b6d9ec8a43158f5868c4be
|
| 3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf68d9f42aff78f09370b3ac81620e7fc190d0323c1b7c18673469b57ccd3a97
|
| 3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:26b544123735c1bdfe447054f7c65a1f52d34d105c5b65ff46af78c0f0dc053e
|
| 3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6382df46852c0cb621bb6b240fba83f26fe9dfad4590f5bbc8e72ffad5dc770
|
| 3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 333312,
|
| 4 |
+
"total_size": 15231233024
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 345 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 346 |
+
}
|
| 347 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84750af6bd4c34478c638e5299fa86cb8f0f3128e5a353af7e4aa00b600124b4
|
| 3 |
+
size 16325
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9cdd6b07b9796a600d1534d8719a801f1c120c193fb1c3890b20b6a96e01cc20
|
| 3 |
+
size 16325
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6c53d380012c858e876248dadf803453a9406d4f96257f341becb2e4f6d219d
|
| 3 |
+
size 16325
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:670a4d80b20868ee65bf71ea7bb701ab312d8a25628994e76c577be2c1517e05
|
| 3 |
+
size 16325
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0766173b35f69d24cd65464a91fcc6bace35fc846062f1b181518d3158c67e4c
|
| 3 |
+
size 16325
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87ceee0c36070f6d4ca84acb7bf39ca74ed45e32e5a3adc32a594388cb2a72e1
|
| 3 |
+
size 16325
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a9bd1d56de9f175f7980bbefcc1a996526855bdba4b646649dc6c453d2a40ee
|
| 3 |
+
size 16325
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea930010081807404b2efc0b7ec27590a59fca05aca0ed1cbcfc03a693429f3f
|
| 3 |
+
size 16325
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab8090b0e048918471f5675a9599d07bf4b60aded9dda2eeaab9a0865546a6f8
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": "<|im_end|>",
|
| 18 |
+
"pad_token": {
|
| 19 |
+
"content": "<|endoftext|>",
|
| 20 |
+
"lstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"rstrip": false,
|
| 23 |
+
"single_word": false
|
| 24 |
+
}
|
| 25 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"split_special_tokens": false,
|
| 205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 206 |
+
"unk_token": null
|
| 207 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.06095330976472022,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 2000,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.00030476654882360114,
|
| 14 |
+
"grad_norm": 0.7457249747340627,
|
| 15 |
+
"learning_rate": 9.137055837563454e-08,
|
| 16 |
+
"loss": 0.6142,
|
| 17 |
+
"num_tokens": 2980145.0,
|
| 18 |
+
"step": 10
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"epoch": 0.0006095330976472023,
|
| 22 |
+
"grad_norm": 0.5230562451977644,
|
| 23 |
+
"learning_rate": 1.9289340101522847e-07,
|
| 24 |
+
"loss": 0.6164,
|
| 25 |
+
"num_tokens": 5996839.0,
|
| 26 |
+
"step": 20
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.0009142996464708034,
|
| 30 |
+
"grad_norm": 0.49714383563689274,
|
| 31 |
+
"learning_rate": 2.9441624365482237e-07,
|
| 32 |
+
"loss": 0.6091,
|
| 33 |
+
"num_tokens": 8885936.0,
|
| 34 |
+
"step": 30
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"epoch": 0.0012190661952944045,
|
| 38 |
+
"grad_norm": 0.49096988376057554,
|
| 39 |
+
"learning_rate": 3.959390862944162e-07,
|
| 40 |
+
"loss": 0.6178,
|
| 41 |
+
"num_tokens": 11902174.0,
|
| 42 |
+
"step": 40
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"epoch": 0.0015238327441180056,
|
| 46 |
+
"grad_norm": 0.4330398526762992,
|
| 47 |
+
"learning_rate": 4.974619289340102e-07,
|
| 48 |
+
"loss": 0.6199,
|
| 49 |
+
"num_tokens": 14925906.0,
|
| 50 |
+
"step": 50
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.0018285992929416067,
|
| 54 |
+
"grad_norm": 0.41516586177368875,
|
| 55 |
+
"learning_rate": 5.989847715736042e-07,
|
| 56 |
+
"loss": 0.616,
|
| 57 |
+
"num_tokens": 17930059.0,
|
| 58 |
+
"step": 60
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.002133365841765208,
|
| 62 |
+
"grad_norm": 0.43028637001925885,
|
| 63 |
+
"learning_rate": 7.005076142131981e-07,
|
| 64 |
+
"loss": 0.6131,
|
| 65 |
+
"num_tokens": 20906359.0,
|
| 66 |
+
"step": 70
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.002438132390588809,
|
| 70 |
+
"grad_norm": 0.4332500284703439,
|
| 71 |
+
"learning_rate": 8.020304568527919e-07,
|
| 72 |
+
"loss": 0.6044,
|
| 73 |
+
"num_tokens": 23929250.0,
|
| 74 |
+
"step": 80
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.00274289893941241,
|
| 78 |
+
"grad_norm": 0.3908329550293861,
|
| 79 |
+
"learning_rate": 9.035532994923858e-07,
|
| 80 |
+
"loss": 0.611,
|
| 81 |
+
"num_tokens": 26927837.0,
|
| 82 |
+
"step": 90
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 0.0030476654882360113,
|
| 86 |
+
"grad_norm": 0.41749282992761355,
|
| 87 |
+
"learning_rate": 1.0050761421319798e-06,
|
| 88 |
+
"loss": 0.6032,
|
| 89 |
+
"num_tokens": 29987544.0,
|
| 90 |
+
"step": 100
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"epoch": 0.003352432037059612,
|
| 94 |
+
"grad_norm": 0.4169278523962904,
|
| 95 |
+
"learning_rate": 1.1065989847715738e-06,
|
| 96 |
+
"loss": 0.5916,
|
| 97 |
+
"num_tokens": 33038706.0,
|
| 98 |
+
"step": 110
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.0036571985858832134,
|
| 102 |
+
"grad_norm": 0.4028416591982731,
|
| 103 |
+
"learning_rate": 1.2081218274111676e-06,
|
| 104 |
+
"loss": 0.6008,
|
| 105 |
+
"num_tokens": 36086832.0,
|
| 106 |
+
"step": 120
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"epoch": 0.003961965134706815,
|
| 110 |
+
"grad_norm": 0.474979518300003,
|
| 111 |
+
"learning_rate": 1.3096446700507614e-06,
|
| 112 |
+
"loss": 0.6145,
|
| 113 |
+
"num_tokens": 39092440.0,
|
| 114 |
+
"step": 130
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.004266731683530416,
|
| 118 |
+
"grad_norm": 0.47119945262680424,
|
| 119 |
+
"learning_rate": 1.4111675126903554e-06,
|
| 120 |
+
"loss": 0.6128,
|
| 121 |
+
"num_tokens": 42041721.0,
|
| 122 |
+
"step": 140
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.0045714982323540165,
|
| 126 |
+
"grad_norm": 0.4067936922360184,
|
| 127 |
+
"learning_rate": 1.5126903553299494e-06,
|
| 128 |
+
"loss": 0.6095,
|
| 129 |
+
"num_tokens": 45028968.0,
|
| 130 |
+
"step": 150
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.004876264781177618,
|
| 134 |
+
"grad_norm": 0.4858340781478565,
|
| 135 |
+
"learning_rate": 1.6142131979695432e-06,
|
| 136 |
+
"loss": 0.6175,
|
| 137 |
+
"num_tokens": 47973669.0,
|
| 138 |
+
"step": 160
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"epoch": 0.005181031330001219,
|
| 142 |
+
"grad_norm": 0.4401239901711096,
|
| 143 |
+
"learning_rate": 1.7157360406091372e-06,
|
| 144 |
+
"loss": 0.5893,
|
| 145 |
+
"num_tokens": 50987779.0,
|
| 146 |
+
"step": 170
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.00548579787882482,
|
| 150 |
+
"grad_norm": 0.4460687010247,
|
| 151 |
+
"learning_rate": 1.8172588832487312e-06,
|
| 152 |
+
"loss": 0.6026,
|
| 153 |
+
"num_tokens": 54041218.0,
|
| 154 |
+
"step": 180
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 0.005790564427648422,
|
| 158 |
+
"grad_norm": 0.4501185094476908,
|
| 159 |
+
"learning_rate": 1.9187817258883252e-06,
|
| 160 |
+
"loss": 0.6008,
|
| 161 |
+
"num_tokens": 56982269.0,
|
| 162 |
+
"step": 190
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"epoch": 0.0060953309764720225,
|
| 166 |
+
"grad_norm": 0.4909095450175495,
|
| 167 |
+
"learning_rate": 2.0203045685279192e-06,
|
| 168 |
+
"loss": 0.6089,
|
| 169 |
+
"num_tokens": 59938083.0,
|
| 170 |
+
"step": 200
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.006400097525295623,
|
| 174 |
+
"grad_norm": 0.407422663157645,
|
| 175 |
+
"learning_rate": 2.121827411167513e-06,
|
| 176 |
+
"loss": 0.6116,
|
| 177 |
+
"num_tokens": 62969469.0,
|
| 178 |
+
"step": 210
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.006704864074119224,
|
| 182 |
+
"grad_norm": 0.4483755982384412,
|
| 183 |
+
"learning_rate": 2.223350253807107e-06,
|
| 184 |
+
"loss": 0.5879,
|
| 185 |
+
"num_tokens": 65900724.0,
|
| 186 |
+
"step": 220
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 0.007009630622942826,
|
| 190 |
+
"grad_norm": 0.4611576231522366,
|
| 191 |
+
"learning_rate": 2.324873096446701e-06,
|
| 192 |
+
"loss": 0.6119,
|
| 193 |
+
"num_tokens": 68899345.0,
|
| 194 |
+
"step": 230
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.007314397171766427,
|
| 198 |
+
"grad_norm": 0.4493444382084047,
|
| 199 |
+
"learning_rate": 2.4263959390862944e-06,
|
| 200 |
+
"loss": 0.6006,
|
| 201 |
+
"num_tokens": 71888265.0,
|
| 202 |
+
"step": 240
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 0.007619163720590028,
|
| 206 |
+
"grad_norm": 0.48989463829316715,
|
| 207 |
+
"learning_rate": 2.527918781725889e-06,
|
| 208 |
+
"loss": 0.5935,
|
| 209 |
+
"num_tokens": 74852357.0,
|
| 210 |
+
"step": 250
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"epoch": 0.00792393026941363,
|
| 214 |
+
"grad_norm": 0.44739062063292384,
|
| 215 |
+
"learning_rate": 2.6294416243654824e-06,
|
| 216 |
+
"loss": 0.6055,
|
| 217 |
+
"num_tokens": 77887469.0,
|
| 218 |
+
"step": 260
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.00822869681823723,
|
| 222 |
+
"grad_norm": 0.48068140497642214,
|
| 223 |
+
"learning_rate": 2.730964467005076e-06,
|
| 224 |
+
"loss": 0.5901,
|
| 225 |
+
"num_tokens": 80914803.0,
|
| 226 |
+
"step": 270
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.008533463367060831,
|
| 230 |
+
"grad_norm": 0.5233143764709678,
|
| 231 |
+
"learning_rate": 2.8324873096446704e-06,
|
| 232 |
+
"loss": 0.6069,
|
| 233 |
+
"num_tokens": 83909605.0,
|
| 234 |
+
"step": 280
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.008838229915884432,
|
| 238 |
+
"grad_norm": 0.4774701979403596,
|
| 239 |
+
"learning_rate": 2.934010152284264e-06,
|
| 240 |
+
"loss": 0.5846,
|
| 241 |
+
"num_tokens": 86917981.0,
|
| 242 |
+
"step": 290
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.009142996464708033,
|
| 246 |
+
"grad_norm": 0.5130960008034174,
|
| 247 |
+
"learning_rate": 3.035532994923858e-06,
|
| 248 |
+
"loss": 0.6034,
|
| 249 |
+
"num_tokens": 89890382.0,
|
| 250 |
+
"step": 300
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 0.009447763013531636,
|
| 254 |
+
"grad_norm": 0.5410605184236367,
|
| 255 |
+
"learning_rate": 3.137055837563452e-06,
|
| 256 |
+
"loss": 0.6011,
|
| 257 |
+
"num_tokens": 92882407.0,
|
| 258 |
+
"step": 310
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 0.009752529562355236,
|
| 262 |
+
"grad_norm": 0.4744253443258629,
|
| 263 |
+
"learning_rate": 3.238578680203046e-06,
|
| 264 |
+
"loss": 0.596,
|
| 265 |
+
"num_tokens": 95952332.0,
|
| 266 |
+
"step": 320
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.010057296111178837,
|
| 270 |
+
"grad_norm": 0.4771199402059675,
|
| 271 |
+
"learning_rate": 3.3401015228426396e-06,
|
| 272 |
+
"loss": 0.5961,
|
| 273 |
+
"num_tokens": 98980436.0,
|
| 274 |
+
"step": 330
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"epoch": 0.010362062660002438,
|
| 278 |
+
"grad_norm": 0.4637328128768241,
|
| 279 |
+
"learning_rate": 3.441624365482234e-06,
|
| 280 |
+
"loss": 0.5941,
|
| 281 |
+
"num_tokens": 102004099.0,
|
| 282 |
+
"step": 340
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.010666829208826039,
|
| 286 |
+
"grad_norm": 0.5192952235899345,
|
| 287 |
+
"learning_rate": 3.5431472081218276e-06,
|
| 288 |
+
"loss": 0.5816,
|
| 289 |
+
"num_tokens": 105032718.0,
|
| 290 |
+
"step": 350
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.01097159575764964,
|
| 294 |
+
"grad_norm": 0.5301506204288337,
|
| 295 |
+
"learning_rate": 3.644670050761422e-06,
|
| 296 |
+
"loss": 0.6062,
|
| 297 |
+
"num_tokens": 108023271.0,
|
| 298 |
+
"step": 360
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"epoch": 0.01127636230647324,
|
| 302 |
+
"grad_norm": 0.5199604764649894,
|
| 303 |
+
"learning_rate": 3.7461928934010156e-06,
|
| 304 |
+
"loss": 0.6046,
|
| 305 |
+
"num_tokens": 111041751.0,
|
| 306 |
+
"step": 370
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.011581128855296843,
|
| 310 |
+
"grad_norm": 0.5159668884756926,
|
| 311 |
+
"learning_rate": 3.847715736040609e-06,
|
| 312 |
+
"loss": 0.595,
|
| 313 |
+
"num_tokens": 113998068.0,
|
| 314 |
+
"step": 380
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.011885895404120444,
|
| 318 |
+
"grad_norm": 0.541343488588413,
|
| 319 |
+
"learning_rate": 3.949238578680203e-06,
|
| 320 |
+
"loss": 0.5909,
|
| 321 |
+
"num_tokens": 117011555.0,
|
| 322 |
+
"step": 390
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 0.012190661952944045,
|
| 326 |
+
"grad_norm": 0.5507329622876062,
|
| 327 |
+
"learning_rate": 4.050761421319797e-06,
|
| 328 |
+
"loss": 0.6116,
|
| 329 |
+
"num_tokens": 119971082.0,
|
| 330 |
+
"step": 400
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"epoch": 0.012495428501767646,
|
| 334 |
+
"grad_norm": 0.5387900338289145,
|
| 335 |
+
"learning_rate": 4.152284263959391e-06,
|
| 336 |
+
"loss": 0.5972,
|
| 337 |
+
"num_tokens": 122935836.0,
|
| 338 |
+
"step": 410
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.012800195050591247,
|
| 342 |
+
"grad_norm": 0.5211259283987176,
|
| 343 |
+
"learning_rate": 4.253807106598985e-06,
|
| 344 |
+
"loss": 0.5972,
|
| 345 |
+
"num_tokens": 125930244.0,
|
| 346 |
+
"step": 420
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.013104961599414848,
|
| 350 |
+
"grad_norm": 0.5193796245645712,
|
| 351 |
+
"learning_rate": 4.355329949238579e-06,
|
| 352 |
+
"loss": 0.62,
|
| 353 |
+
"num_tokens": 128941908.0,
|
| 354 |
+
"step": 430
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"epoch": 0.013409728148238449,
|
| 358 |
+
"grad_norm": 0.5529483243359413,
|
| 359 |
+
"learning_rate": 4.456852791878173e-06,
|
| 360 |
+
"loss": 0.6036,
|
| 361 |
+
"num_tokens": 131937447.0,
|
| 362 |
+
"step": 440
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.013714494697062051,
|
| 366 |
+
"grad_norm": 0.6030580723464019,
|
| 367 |
+
"learning_rate": 4.558375634517767e-06,
|
| 368 |
+
"loss": 0.597,
|
| 369 |
+
"num_tokens": 134893931.0,
|
| 370 |
+
"step": 450
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 0.014019261245885652,
|
| 374 |
+
"grad_norm": 0.5638437321715631,
|
| 375 |
+
"learning_rate": 4.6598984771573604e-06,
|
| 376 |
+
"loss": 0.6115,
|
| 377 |
+
"num_tokens": 137827084.0,
|
| 378 |
+
"step": 460
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 0.014324027794709253,
|
| 382 |
+
"grad_norm": 0.5089162615052084,
|
| 383 |
+
"learning_rate": 4.7614213197969544e-06,
|
| 384 |
+
"loss": 0.6033,
|
| 385 |
+
"num_tokens": 140842870.0,
|
| 386 |
+
"step": 470
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 0.014628794343532854,
|
| 390 |
+
"grad_norm": 0.5368683405687481,
|
| 391 |
+
"learning_rate": 4.8629441624365485e-06,
|
| 392 |
+
"loss": 0.6017,
|
| 393 |
+
"num_tokens": 143843882.0,
|
| 394 |
+
"step": 480
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.014933560892356455,
|
| 398 |
+
"grad_norm": 0.560866440724884,
|
| 399 |
+
"learning_rate": 4.9644670050761425e-06,
|
| 400 |
+
"loss": 0.6025,
|
| 401 |
+
"num_tokens": 146811617.0,
|
| 402 |
+
"step": 490
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.015238327441180055,
|
| 406 |
+
"grad_norm": 0.5651422936330702,
|
| 407 |
+
"learning_rate": 5.0659898477157365e-06,
|
| 408 |
+
"loss": 0.5936,
|
| 409 |
+
"num_tokens": 149829605.0,
|
| 410 |
+
"step": 500
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.015543093990003658,
|
| 414 |
+
"grad_norm": 0.47211095143464976,
|
| 415 |
+
"learning_rate": 5.1675126903553305e-06,
|
| 416 |
+
"loss": 0.6002,
|
| 417 |
+
"num_tokens": 152879090.0,
|
| 418 |
+
"step": 510
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.01584786053882726,
|
| 422 |
+
"grad_norm": 0.5419676421463695,
|
| 423 |
+
"learning_rate": 5.269035532994924e-06,
|
| 424 |
+
"loss": 0.6068,
|
| 425 |
+
"num_tokens": 155844929.0,
|
| 426 |
+
"step": 520
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"epoch": 0.016152627087650858,
|
| 430 |
+
"grad_norm": 0.6246209039471872,
|
| 431 |
+
"learning_rate": 5.3705583756345185e-06,
|
| 432 |
+
"loss": 0.5964,
|
| 433 |
+
"num_tokens": 158860844.0,
|
| 434 |
+
"step": 530
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.01645739363647446,
|
| 438 |
+
"grad_norm": 0.549771097832386,
|
| 439 |
+
"learning_rate": 5.4720812182741125e-06,
|
| 440 |
+
"loss": 0.5955,
|
| 441 |
+
"num_tokens": 161834390.0,
|
| 442 |
+
"step": 540
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 0.016762160185298063,
|
| 446 |
+
"grad_norm": 0.5238364197670614,
|
| 447 |
+
"learning_rate": 5.5736040609137065e-06,
|
| 448 |
+
"loss": 0.6105,
|
| 449 |
+
"num_tokens": 164903408.0,
|
| 450 |
+
"step": 550
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.017066926734121662,
|
| 454 |
+
"grad_norm": 0.5431655224279603,
|
| 455 |
+
"learning_rate": 5.6751269035533e-06,
|
| 456 |
+
"loss": 0.5808,
|
| 457 |
+
"num_tokens": 167945658.0,
|
| 458 |
+
"step": 560
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.017371693282945265,
|
| 462 |
+
"grad_norm": 0.5257430900462962,
|
| 463 |
+
"learning_rate": 5.776649746192894e-06,
|
| 464 |
+
"loss": 0.5987,
|
| 465 |
+
"num_tokens": 170984358.0,
|
| 466 |
+
"step": 570
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"epoch": 0.017676459831768864,
|
| 470 |
+
"grad_norm": 0.6003046913840301,
|
| 471 |
+
"learning_rate": 5.878172588832488e-06,
|
| 472 |
+
"loss": 0.6033,
|
| 473 |
+
"num_tokens": 173989761.0,
|
| 474 |
+
"step": 580
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 0.017981226380592467,
|
| 478 |
+
"grad_norm": 0.5672973145643517,
|
| 479 |
+
"learning_rate": 5.979695431472081e-06,
|
| 480 |
+
"loss": 0.6102,
|
| 481 |
+
"num_tokens": 176968810.0,
|
| 482 |
+
"step": 590
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.018285992929416066,
|
| 486 |
+
"grad_norm": 0.5503549692186483,
|
| 487 |
+
"learning_rate": 6.081218274111676e-06,
|
| 488 |
+
"loss": 0.6077,
|
| 489 |
+
"num_tokens": 179971815.0,
|
| 490 |
+
"step": 600
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.01859075947823967,
|
| 494 |
+
"grad_norm": 0.529283833183057,
|
| 495 |
+
"learning_rate": 6.18274111675127e-06,
|
| 496 |
+
"loss": 0.5999,
|
| 497 |
+
"num_tokens": 183003541.0,
|
| 498 |
+
"step": 610
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"epoch": 0.01889552602706327,
|
| 502 |
+
"grad_norm": 0.6080338349548227,
|
| 503 |
+
"learning_rate": 6.284263959390864e-06,
|
| 504 |
+
"loss": 0.6049,
|
| 505 |
+
"num_tokens": 185970071.0,
|
| 506 |
+
"step": 620
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.01920029257588687,
|
| 510 |
+
"grad_norm": 0.5457834941063321,
|
| 511 |
+
"learning_rate": 6.385786802030457e-06,
|
| 512 |
+
"loss": 0.6061,
|
| 513 |
+
"num_tokens": 188977852.0,
|
| 514 |
+
"step": 630
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.019505059124710473,
|
| 518 |
+
"grad_norm": 0.5811218073065819,
|
| 519 |
+
"learning_rate": 6.487309644670051e-06,
|
| 520 |
+
"loss": 0.5996,
|
| 521 |
+
"num_tokens": 191894102.0,
|
| 522 |
+
"step": 640
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 0.019809825673534072,
|
| 526 |
+
"grad_norm": 0.5874876696821952,
|
| 527 |
+
"learning_rate": 6.588832487309646e-06,
|
| 528 |
+
"loss": 0.5917,
|
| 529 |
+
"num_tokens": 194930427.0,
|
| 530 |
+
"step": 650
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.020114592222357675,
|
| 534 |
+
"grad_norm": 0.643812726542813,
|
| 535 |
+
"learning_rate": 6.69035532994924e-06,
|
| 536 |
+
"loss": 0.5991,
|
| 537 |
+
"num_tokens": 197878331.0,
|
| 538 |
+
"step": 660
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"epoch": 0.020419358771181274,
|
| 542 |
+
"grad_norm": 0.5164219399748118,
|
| 543 |
+
"learning_rate": 6.791878172588833e-06,
|
| 544 |
+
"loss": 0.6038,
|
| 545 |
+
"num_tokens": 200865810.0,
|
| 546 |
+
"step": 670
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 0.020724125320004876,
|
| 550 |
+
"grad_norm": 0.520689078647113,
|
| 551 |
+
"learning_rate": 6.893401015228427e-06,
|
| 552 |
+
"loss": 0.5979,
|
| 553 |
+
"num_tokens": 203817250.0,
|
| 554 |
+
"step": 680
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 0.02102889186882848,
|
| 558 |
+
"grad_norm": 0.5039371962942628,
|
| 559 |
+
"learning_rate": 6.994923857868021e-06,
|
| 560 |
+
"loss": 0.5975,
|
| 561 |
+
"num_tokens": 206811537.0,
|
| 562 |
+
"step": 690
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.021333658417652078,
|
| 566 |
+
"grad_norm": 0.5544674068606494,
|
| 567 |
+
"learning_rate": 7.096446700507614e-06,
|
| 568 |
+
"loss": 0.6025,
|
| 569 |
+
"num_tokens": 209795067.0,
|
| 570 |
+
"step": 700
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.02163842496647568,
|
| 574 |
+
"grad_norm": 0.5784724273304568,
|
| 575 |
+
"learning_rate": 7.197969543147209e-06,
|
| 576 |
+
"loss": 0.6007,
|
| 577 |
+
"num_tokens": 212800409.0,
|
| 578 |
+
"step": 710
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 0.02194319151529928,
|
| 582 |
+
"grad_norm": 0.5019397033545099,
|
| 583 |
+
"learning_rate": 7.299492385786803e-06,
|
| 584 |
+
"loss": 0.5891,
|
| 585 |
+
"num_tokens": 215812500.0,
|
| 586 |
+
"step": 720
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 0.022247958064122882,
|
| 590 |
+
"grad_norm": 0.5145496859403778,
|
| 591 |
+
"learning_rate": 7.401015228426397e-06,
|
| 592 |
+
"loss": 0.5978,
|
| 593 |
+
"num_tokens": 218829927.0,
|
| 594 |
+
"step": 730
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"epoch": 0.02255272461294648,
|
| 598 |
+
"grad_norm": 0.5948272370253752,
|
| 599 |
+
"learning_rate": 7.50253807106599e-06,
|
| 600 |
+
"loss": 0.5981,
|
| 601 |
+
"num_tokens": 221910127.0,
|
| 602 |
+
"step": 740
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 0.022857491161770084,
|
| 606 |
+
"grad_norm": 0.6324523630669571,
|
| 607 |
+
"learning_rate": 7.604060913705584e-06,
|
| 608 |
+
"loss": 0.5977,
|
| 609 |
+
"num_tokens": 224950377.0,
|
| 610 |
+
"step": 750
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 0.023162257710593687,
|
| 614 |
+
"grad_norm": 0.5522771359702385,
|
| 615 |
+
"learning_rate": 7.705583756345178e-06,
|
| 616 |
+
"loss": 0.5968,
|
| 617 |
+
"num_tokens": 227912016.0,
|
| 618 |
+
"step": 760
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.023467024259417286,
|
| 622 |
+
"grad_norm": 0.5678284942531937,
|
| 623 |
+
"learning_rate": 7.807106598984773e-06,
|
| 624 |
+
"loss": 0.6069,
|
| 625 |
+
"num_tokens": 230845440.0,
|
| 626 |
+
"step": 770
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.02377179080824089,
|
| 630 |
+
"grad_norm": 0.5086079282374418,
|
| 631 |
+
"learning_rate": 7.908629441624366e-06,
|
| 632 |
+
"loss": 0.5958,
|
| 633 |
+
"num_tokens": 233888653.0,
|
| 634 |
+
"step": 780
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.024076557357064488,
|
| 638 |
+
"grad_norm": 0.6113040771193711,
|
| 639 |
+
"learning_rate": 8.01015228426396e-06,
|
| 640 |
+
"loss": 0.592,
|
| 641 |
+
"num_tokens": 236913104.0,
|
| 642 |
+
"step": 790
|
| 643 |
+
},
|
| 644 |
+
{
|
| 645 |
+
"epoch": 0.02438132390588809,
|
| 646 |
+
"grad_norm": 0.5112624603004914,
|
| 647 |
+
"learning_rate": 8.111675126903554e-06,
|
| 648 |
+
"loss": 0.5965,
|
| 649 |
+
"num_tokens": 239863099.0,
|
| 650 |
+
"step": 800
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.02468609045471169,
|
| 654 |
+
"grad_norm": 0.5386776285755579,
|
| 655 |
+
"learning_rate": 8.213197969543147e-06,
|
| 656 |
+
"loss": 0.6047,
|
| 657 |
+
"num_tokens": 242936678.0,
|
| 658 |
+
"step": 810
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 0.024990857003535292,
|
| 662 |
+
"grad_norm": 0.6449184905774187,
|
| 663 |
+
"learning_rate": 8.314720812182742e-06,
|
| 664 |
+
"loss": 0.6078,
|
| 665 |
+
"num_tokens": 245924372.0,
|
| 666 |
+
"step": 820
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 0.025295623552358894,
|
| 670 |
+
"grad_norm": 0.5877934183571296,
|
| 671 |
+
"learning_rate": 8.416243654822335e-06,
|
| 672 |
+
"loss": 0.6138,
|
| 673 |
+
"num_tokens": 248814799.0,
|
| 674 |
+
"step": 830
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.025600390101182494,
|
| 678 |
+
"grad_norm": 0.5726975217126076,
|
| 679 |
+
"learning_rate": 8.51776649746193e-06,
|
| 680 |
+
"loss": 0.6003,
|
| 681 |
+
"num_tokens": 251864383.0,
|
| 682 |
+
"step": 840
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.025905156650006096,
|
| 686 |
+
"grad_norm": 0.5884163738699382,
|
| 687 |
+
"learning_rate": 8.619289340101523e-06,
|
| 688 |
+
"loss": 0.5989,
|
| 689 |
+
"num_tokens": 254912320.0,
|
| 690 |
+
"step": 850
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.026209923198829695,
|
| 694 |
+
"grad_norm": 0.5868691029072695,
|
| 695 |
+
"learning_rate": 8.720812182741118e-06,
|
| 696 |
+
"loss": 0.6153,
|
| 697 |
+
"num_tokens": 257948800.0,
|
| 698 |
+
"step": 860
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"epoch": 0.026514689747653298,
|
| 702 |
+
"grad_norm": 0.7286662139359907,
|
| 703 |
+
"learning_rate": 8.822335025380711e-06,
|
| 704 |
+
"loss": 0.5946,
|
| 705 |
+
"num_tokens": 260981575.0,
|
| 706 |
+
"step": 870
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.026819456296476897,
|
| 710 |
+
"grad_norm": 0.5782176364766526,
|
| 711 |
+
"learning_rate": 8.923857868020306e-06,
|
| 712 |
+
"loss": 0.605,
|
| 713 |
+
"num_tokens": 263946166.0,
|
| 714 |
+
"step": 880
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"epoch": 0.0271242228453005,
|
| 718 |
+
"grad_norm": 0.6566796557977583,
|
| 719 |
+
"learning_rate": 9.0253807106599e-06,
|
| 720 |
+
"loss": 0.5947,
|
| 721 |
+
"num_tokens": 266932084.0,
|
| 722 |
+
"step": 890
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 0.027428989394124102,
|
| 726 |
+
"grad_norm": 0.5964252911962427,
|
| 727 |
+
"learning_rate": 9.126903553299493e-06,
|
| 728 |
+
"loss": 0.597,
|
| 729 |
+
"num_tokens": 269940123.0,
|
| 730 |
+
"step": 900
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.0277337559429477,
|
| 734 |
+
"grad_norm": 0.6610602117570733,
|
| 735 |
+
"learning_rate": 9.228426395939087e-06,
|
| 736 |
+
"loss": 0.5997,
|
| 737 |
+
"num_tokens": 272996550.0,
|
| 738 |
+
"step": 910
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.028038522491771304,
|
| 742 |
+
"grad_norm": 0.5481291317994652,
|
| 743 |
+
"learning_rate": 9.32994923857868e-06,
|
| 744 |
+
"loss": 0.6079,
|
| 745 |
+
"num_tokens": 276005284.0,
|
| 746 |
+
"step": 920
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.028343289040594903,
|
| 750 |
+
"grad_norm": 0.5935276827938708,
|
| 751 |
+
"learning_rate": 9.431472081218275e-06,
|
| 752 |
+
"loss": 0.594,
|
| 753 |
+
"num_tokens": 278961666.0,
|
| 754 |
+
"step": 930
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 0.028648055589418506,
|
| 758 |
+
"grad_norm": 0.5973378747127883,
|
| 759 |
+
"learning_rate": 9.532994923857869e-06,
|
| 760 |
+
"loss": 0.6044,
|
| 761 |
+
"num_tokens": 281935833.0,
|
| 762 |
+
"step": 940
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"epoch": 0.028952822138242105,
|
| 766 |
+
"grad_norm": 0.5912756041045825,
|
| 767 |
+
"learning_rate": 9.634517766497463e-06,
|
| 768 |
+
"loss": 0.5926,
|
| 769 |
+
"num_tokens": 284883466.0,
|
| 770 |
+
"step": 950
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"epoch": 0.029257588687065707,
|
| 774 |
+
"grad_norm": 0.5810487871964766,
|
| 775 |
+
"learning_rate": 9.736040609137057e-06,
|
| 776 |
+
"loss": 0.6037,
|
| 777 |
+
"num_tokens": 287922376.0,
|
| 778 |
+
"step": 960
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 0.02956235523588931,
|
| 782 |
+
"grad_norm": 0.7608788298202219,
|
| 783 |
+
"learning_rate": 9.83756345177665e-06,
|
| 784 |
+
"loss": 0.617,
|
| 785 |
+
"num_tokens": 290949742.0,
|
| 786 |
+
"step": 970
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.02986712178471291,
|
| 790 |
+
"grad_norm": 0.6348669161902478,
|
| 791 |
+
"learning_rate": 9.939086294416245e-06,
|
| 792 |
+
"loss": 0.6015,
|
| 793 |
+
"num_tokens": 293974513.0,
|
| 794 |
+
"step": 980
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.030171888333536512,
|
| 798 |
+
"grad_norm": 0.5580420361871727,
|
| 799 |
+
"learning_rate": 9.999999649239378e-06,
|
| 800 |
+
"loss": 0.5986,
|
| 801 |
+
"num_tokens": 297055223.0,
|
| 802 |
+
"step": 990
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.03047665488236011,
|
| 806 |
+
"grad_norm": 0.5886314947114983,
|
| 807 |
+
"learning_rate": 9.999995703183002e-06,
|
| 808 |
+
"loss": 0.6089,
|
| 809 |
+
"num_tokens": 300092531.0,
|
| 810 |
+
"step": 1000
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 0.030781421431183714,
|
| 814 |
+
"grad_norm": 0.5718023626398742,
|
| 815 |
+
"learning_rate": 9.99998737262333e-06,
|
| 816 |
+
"loss": 0.5981,
|
| 817 |
+
"num_tokens": 303195919.0,
|
| 818 |
+
"step": 1010
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"epoch": 0.031086187980007316,
|
| 822 |
+
"grad_norm": 0.6206116128972652,
|
| 823 |
+
"learning_rate": 9.999974657568477e-06,
|
| 824 |
+
"loss": 0.5928,
|
| 825 |
+
"num_tokens": 306247864.0,
|
| 826 |
+
"step": 1020
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 0.031390954528830915,
|
| 830 |
+
"grad_norm": 0.5172240579813588,
|
| 831 |
+
"learning_rate": 9.999957558030833e-06,
|
| 832 |
+
"loss": 0.6059,
|
| 833 |
+
"num_tokens": 309235571.0,
|
| 834 |
+
"step": 1030
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"epoch": 0.03169572107765452,
|
| 838 |
+
"grad_norm": 0.5098188832148954,
|
| 839 |
+
"learning_rate": 9.999936074027058e-06,
|
| 840 |
+
"loss": 0.6184,
|
| 841 |
+
"num_tokens": 312233701.0,
|
| 842 |
+
"step": 1040
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.03200048762647812,
|
| 846 |
+
"grad_norm": 0.6712184280872747,
|
| 847 |
+
"learning_rate": 9.999910205578088e-06,
|
| 848 |
+
"loss": 0.6182,
|
| 849 |
+
"num_tokens": 315180794.0,
|
| 850 |
+
"step": 1050
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.032305254175301716,
|
| 854 |
+
"grad_norm": 0.5381662063088128,
|
| 855 |
+
"learning_rate": 9.99987995270912e-06,
|
| 856 |
+
"loss": 0.6157,
|
| 857 |
+
"num_tokens": 318145236.0,
|
| 858 |
+
"step": 1060
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.03261002072412532,
|
| 862 |
+
"grad_norm": 0.6327671055732239,
|
| 863 |
+
"learning_rate": 9.999845315449637e-06,
|
| 864 |
+
"loss": 0.5918,
|
| 865 |
+
"num_tokens": 321201600.0,
|
| 866 |
+
"step": 1070
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"epoch": 0.03291478727294892,
|
| 870 |
+
"grad_norm": 0.6518354594585019,
|
| 871 |
+
"learning_rate": 9.999806293833387e-06,
|
| 872 |
+
"loss": 0.6081,
|
| 873 |
+
"num_tokens": 324242875.0,
|
| 874 |
+
"step": 1080
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 0.033219553821772524,
|
| 878 |
+
"grad_norm": 0.5539270879326635,
|
| 879 |
+
"learning_rate": 9.999762887898387e-06,
|
| 880 |
+
"loss": 0.6004,
|
| 881 |
+
"num_tokens": 327299868.0,
|
| 882 |
+
"step": 1090
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"epoch": 0.033524320370596127,
|
| 886 |
+
"grad_norm": 0.5411600759723616,
|
| 887 |
+
"learning_rate": 9.999715097686932e-06,
|
| 888 |
+
"loss": 0.612,
|
| 889 |
+
"num_tokens": 330350525.0,
|
| 890 |
+
"step": 1100
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"epoch": 0.03382908691941972,
|
| 894 |
+
"grad_norm": 0.5585636408454607,
|
| 895 |
+
"learning_rate": 9.999662923245582e-06,
|
| 896 |
+
"loss": 0.5932,
|
| 897 |
+
"num_tokens": 333397170.0,
|
| 898 |
+
"step": 1110
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.034133853468243325,
|
| 902 |
+
"grad_norm": 0.60791649981183,
|
| 903 |
+
"learning_rate": 9.999606364625174e-06,
|
| 904 |
+
"loss": 0.6001,
|
| 905 |
+
"num_tokens": 336273179.0,
|
| 906 |
+
"step": 1120
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.03443862001706693,
|
| 910 |
+
"grad_norm": 0.6351784309943206,
|
| 911 |
+
"learning_rate": 9.999545421880819e-06,
|
| 912 |
+
"loss": 0.6043,
|
| 913 |
+
"num_tokens": 339257454.0,
|
| 914 |
+
"step": 1130
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.03474338656589053,
|
| 918 |
+
"grad_norm": 0.5653344825112488,
|
| 919 |
+
"learning_rate": 9.999480095071888e-06,
|
| 920 |
+
"loss": 0.5955,
|
| 921 |
+
"num_tokens": 342345138.0,
|
| 922 |
+
"step": 1140
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 0.035048153114714126,
|
| 926 |
+
"grad_norm": 0.6610539460568494,
|
| 927 |
+
"learning_rate": 9.999410384262038e-06,
|
| 928 |
+
"loss": 0.6003,
|
| 929 |
+
"num_tokens": 345336558.0,
|
| 930 |
+
"step": 1150
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"epoch": 0.03535291966353773,
|
| 934 |
+
"grad_norm": 0.6040031590644234,
|
| 935 |
+
"learning_rate": 9.999336289519188e-06,
|
| 936 |
+
"loss": 0.6077,
|
| 937 |
+
"num_tokens": 348348169.0,
|
| 938 |
+
"step": 1160
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 0.03565768621236133,
|
| 942 |
+
"grad_norm": 0.5684955670142974,
|
| 943 |
+
"learning_rate": 9.99925781091553e-06,
|
| 944 |
+
"loss": 0.6057,
|
| 945 |
+
"num_tokens": 351414195.0,
|
| 946 |
+
"step": 1170
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 0.03596245276118493,
|
| 950 |
+
"grad_norm": 0.6156749822501932,
|
| 951 |
+
"learning_rate": 9.99917494852753e-06,
|
| 952 |
+
"loss": 0.5824,
|
| 953 |
+
"num_tokens": 354539074.0,
|
| 954 |
+
"step": 1180
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.036267219310008536,
|
| 958 |
+
"grad_norm": 0.6099142423052227,
|
| 959 |
+
"learning_rate": 9.999087702435924e-06,
|
| 960 |
+
"loss": 0.6063,
|
| 961 |
+
"num_tokens": 357558942.0,
|
| 962 |
+
"step": 1190
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.03657198585883213,
|
| 966 |
+
"grad_norm": 0.665879466142715,
|
| 967 |
+
"learning_rate": 9.998996072725716e-06,
|
| 968 |
+
"loss": 0.6012,
|
| 969 |
+
"num_tokens": 360650474.0,
|
| 970 |
+
"step": 1200
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.036876752407655734,
|
| 974 |
+
"grad_norm": 0.60485897990858,
|
| 975 |
+
"learning_rate": 9.998900059486189e-06,
|
| 976 |
+
"loss": 0.6032,
|
| 977 |
+
"num_tokens": 363700986.0,
|
| 978 |
+
"step": 1210
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"epoch": 0.03718151895647934,
|
| 982 |
+
"grad_norm": 0.7598824750362458,
|
| 983 |
+
"learning_rate": 9.998799662810888e-06,
|
| 984 |
+
"loss": 0.61,
|
| 985 |
+
"num_tokens": 366705230.0,
|
| 986 |
+
"step": 1220
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"epoch": 0.03748628550530294,
|
| 990 |
+
"grad_norm": 0.5876567393111121,
|
| 991 |
+
"learning_rate": 9.998694882797634e-06,
|
| 992 |
+
"loss": 0.6124,
|
| 993 |
+
"num_tokens": 369694176.0,
|
| 994 |
+
"step": 1230
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.03779105205412654,
|
| 998 |
+
"grad_norm": 0.7072433052411577,
|
| 999 |
+
"learning_rate": 9.998585719548519e-06,
|
| 1000 |
+
"loss": 0.6037,
|
| 1001 |
+
"num_tokens": 372694789.0,
|
| 1002 |
+
"step": 1240
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"epoch": 0.03809581860295014,
|
| 1006 |
+
"grad_norm": 0.6166270390022508,
|
| 1007 |
+
"learning_rate": 9.998472173169904e-06,
|
| 1008 |
+
"loss": 0.5974,
|
| 1009 |
+
"num_tokens": 375709531.0,
|
| 1010 |
+
"step": 1250
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.03840058515177374,
|
| 1014 |
+
"grad_norm": 0.6299556744164037,
|
| 1015 |
+
"learning_rate": 9.99835424377242e-06,
|
| 1016 |
+
"loss": 0.6084,
|
| 1017 |
+
"num_tokens": 378721461.0,
|
| 1018 |
+
"step": 1260
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.03870535170059734,
|
| 1022 |
+
"grad_norm": 0.6019823193375798,
|
| 1023 |
+
"learning_rate": 9.998231931470972e-06,
|
| 1024 |
+
"loss": 0.6064,
|
| 1025 |
+
"num_tokens": 381814974.0,
|
| 1026 |
+
"step": 1270
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.039010118249420946,
|
| 1030 |
+
"grad_norm": 0.5740532096312945,
|
| 1031 |
+
"learning_rate": 9.998105236384729e-06,
|
| 1032 |
+
"loss": 0.6041,
|
| 1033 |
+
"num_tokens": 384900077.0,
|
| 1034 |
+
"step": 1280
|
| 1035 |
+
},
|
| 1036 |
+
{
|
| 1037 |
+
"epoch": 0.03931488479824454,
|
| 1038 |
+
"grad_norm": 0.6790343891386362,
|
| 1039 |
+
"learning_rate": 9.99797415863714e-06,
|
| 1040 |
+
"loss": 0.6013,
|
| 1041 |
+
"num_tokens": 387879610.0,
|
| 1042 |
+
"step": 1290
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"epoch": 0.039619651347068144,
|
| 1046 |
+
"grad_norm": 0.7077423025471166,
|
| 1047 |
+
"learning_rate": 9.997838698355914e-06,
|
| 1048 |
+
"loss": 0.6076,
|
| 1049 |
+
"num_tokens": 390864425.0,
|
| 1050 |
+
"step": 1300
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 0.039924417895891746,
|
| 1054 |
+
"grad_norm": 0.6024679257495524,
|
| 1055 |
+
"learning_rate": 9.997698855673038e-06,
|
| 1056 |
+
"loss": 0.6014,
|
| 1057 |
+
"num_tokens": 393808852.0,
|
| 1058 |
+
"step": 1310
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 0.04022918444471535,
|
| 1062 |
+
"grad_norm": 0.6810529775806461,
|
| 1063 |
+
"learning_rate": 9.997554630724764e-06,
|
| 1064 |
+
"loss": 0.6154,
|
| 1065 |
+
"num_tokens": 396845763.0,
|
| 1066 |
+
"step": 1320
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.04053395099353895,
|
| 1070 |
+
"grad_norm": 0.5431520105621443,
|
| 1071 |
+
"learning_rate": 9.997406023651616e-06,
|
| 1072 |
+
"loss": 0.603,
|
| 1073 |
+
"num_tokens": 399849414.0,
|
| 1074 |
+
"step": 1330
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.04083871754236255,
|
| 1078 |
+
"grad_norm": 0.6739822771280697,
|
| 1079 |
+
"learning_rate": 9.997253034598387e-06,
|
| 1080 |
+
"loss": 0.5996,
|
| 1081 |
+
"num_tokens": 402855291.0,
|
| 1082 |
+
"step": 1340
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.04114348409118615,
|
| 1086 |
+
"grad_norm": 0.5806695994649888,
|
| 1087 |
+
"learning_rate": 9.997095663714137e-06,
|
| 1088 |
+
"loss": 0.6001,
|
| 1089 |
+
"num_tokens": 405820396.0,
|
| 1090 |
+
"step": 1350
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.04144825064000975,
|
| 1094 |
+
"grad_norm": 0.6946026869742606,
|
| 1095 |
+
"learning_rate": 9.996933911152202e-06,
|
| 1096 |
+
"loss": 0.6109,
|
| 1097 |
+
"num_tokens": 408837615.0,
|
| 1098 |
+
"step": 1360
|
| 1099 |
+
},
|
| 1100 |
+
{
|
| 1101 |
+
"epoch": 0.041753017188833355,
|
| 1102 |
+
"grad_norm": 0.659471975792841,
|
| 1103 |
+
"learning_rate": 9.996767777070181e-06,
|
| 1104 |
+
"loss": 0.6059,
|
| 1105 |
+
"num_tokens": 411854462.0,
|
| 1106 |
+
"step": 1370
|
| 1107 |
+
},
|
| 1108 |
+
{
|
| 1109 |
+
"epoch": 0.04205778373765696,
|
| 1110 |
+
"grad_norm": 0.6261217460987484,
|
| 1111 |
+
"learning_rate": 9.996597261629946e-06,
|
| 1112 |
+
"loss": 0.5943,
|
| 1113 |
+
"num_tokens": 414836975.0,
|
| 1114 |
+
"step": 1380
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 0.04236255028648055,
|
| 1118 |
+
"grad_norm": 0.581519216568936,
|
| 1119 |
+
"learning_rate": 9.996422364997634e-06,
|
| 1120 |
+
"loss": 0.617,
|
| 1121 |
+
"num_tokens": 417838818.0,
|
| 1122 |
+
"step": 1390
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.042667316835304156,
|
| 1126 |
+
"grad_norm": 0.5929977486471997,
|
| 1127 |
+
"learning_rate": 9.996243087343653e-06,
|
| 1128 |
+
"loss": 0.5893,
|
| 1129 |
+
"num_tokens": 420796359.0,
|
| 1130 |
+
"step": 1400
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.04297208338412776,
|
| 1134 |
+
"grad_norm": 0.6012824149251887,
|
| 1135 |
+
"learning_rate": 9.996059428842681e-06,
|
| 1136 |
+
"loss": 0.6016,
|
| 1137 |
+
"num_tokens": 423785552.0,
|
| 1138 |
+
"step": 1410
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.04327684993295136,
|
| 1142 |
+
"grad_norm": 0.5813336121248558,
|
| 1143 |
+
"learning_rate": 9.995871389673661e-06,
|
| 1144 |
+
"loss": 0.6002,
|
| 1145 |
+
"num_tokens": 426814600.0,
|
| 1146 |
+
"step": 1420
|
| 1147 |
+
},
|
| 1148 |
+
{
|
| 1149 |
+
"epoch": 0.043581616481774964,
|
| 1150 |
+
"grad_norm": 0.5465897814086882,
|
| 1151 |
+
"learning_rate": 9.99567897001981e-06,
|
| 1152 |
+
"loss": 0.6125,
|
| 1153 |
+
"num_tokens": 429802508.0,
|
| 1154 |
+
"step": 1430
|
| 1155 |
+
},
|
| 1156 |
+
{
|
| 1157 |
+
"epoch": 0.04388638303059856,
|
| 1158 |
+
"grad_norm": 0.5984329688655077,
|
| 1159 |
+
"learning_rate": 9.995482170068605e-06,
|
| 1160 |
+
"loss": 0.6079,
|
| 1161 |
+
"num_tokens": 432764345.0,
|
| 1162 |
+
"step": 1440
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 0.04419114957942216,
|
| 1166 |
+
"grad_norm": 0.610168092795878,
|
| 1167 |
+
"learning_rate": 9.995280990011796e-06,
|
| 1168 |
+
"loss": 0.6062,
|
| 1169 |
+
"num_tokens": 435741101.0,
|
| 1170 |
+
"step": 1450
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 0.044495916128245765,
|
| 1174 |
+
"grad_norm": 0.5709650873056764,
|
| 1175 |
+
"learning_rate": 9.995075430045402e-06,
|
| 1176 |
+
"loss": 0.6013,
|
| 1177 |
+
"num_tokens": 438789688.0,
|
| 1178 |
+
"step": 1460
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.04480068267706937,
|
| 1182 |
+
"grad_norm": 0.5172547307532018,
|
| 1183 |
+
"learning_rate": 9.994865490369703e-06,
|
| 1184 |
+
"loss": 0.5993,
|
| 1185 |
+
"num_tokens": 441759109.0,
|
| 1186 |
+
"step": 1470
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.04510544922589296,
|
| 1190 |
+
"grad_norm": 0.5222110494511161,
|
| 1191 |
+
"learning_rate": 9.994651171189255e-06,
|
| 1192 |
+
"loss": 0.6013,
|
| 1193 |
+
"num_tokens": 444767322.0,
|
| 1194 |
+
"step": 1480
|
| 1195 |
+
},
|
| 1196 |
+
{
|
| 1197 |
+
"epoch": 0.045410215774716566,
|
| 1198 |
+
"grad_norm": 0.6120571227841243,
|
| 1199 |
+
"learning_rate": 9.994432472712875e-06,
|
| 1200 |
+
"loss": 0.608,
|
| 1201 |
+
"num_tokens": 447776227.0,
|
| 1202 |
+
"step": 1490
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.04571498232354017,
|
| 1206 |
+
"grad_norm": 0.6956715541420607,
|
| 1207 |
+
"learning_rate": 9.994209395153648e-06,
|
| 1208 |
+
"loss": 0.5909,
|
| 1209 |
+
"num_tokens": 450799563.0,
|
| 1210 |
+
"step": 1500
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"epoch": 0.04601974887236377,
|
| 1214 |
+
"grad_norm": 0.5613221067988521,
|
| 1215 |
+
"learning_rate": 9.993981938728927e-06,
|
| 1216 |
+
"loss": 0.6131,
|
| 1217 |
+
"num_tokens": 453829588.0,
|
| 1218 |
+
"step": 1510
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"epoch": 0.04632451542118737,
|
| 1222 |
+
"grad_norm": 0.5858287013485725,
|
| 1223 |
+
"learning_rate": 9.99375010366033e-06,
|
| 1224 |
+
"loss": 0.6003,
|
| 1225 |
+
"num_tokens": 456869534.0,
|
| 1226 |
+
"step": 1520
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"epoch": 0.04662928197001097,
|
| 1230 |
+
"grad_norm": 0.6229656396539505,
|
| 1231 |
+
"learning_rate": 9.993513890173744e-06,
|
| 1232 |
+
"loss": 0.6026,
|
| 1233 |
+
"num_tokens": 459859723.0,
|
| 1234 |
+
"step": 1530
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.04693404851883457,
|
| 1238 |
+
"grad_norm": 0.5841220954567161,
|
| 1239 |
+
"learning_rate": 9.993273298499316e-06,
|
| 1240 |
+
"loss": 0.6023,
|
| 1241 |
+
"num_tokens": 462867699.0,
|
| 1242 |
+
"step": 1540
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.047238815067658174,
|
| 1246 |
+
"grad_norm": 0.6425202001571686,
|
| 1247 |
+
"learning_rate": 9.993028328871467e-06,
|
| 1248 |
+
"loss": 0.6044,
|
| 1249 |
+
"num_tokens": 465823281.0,
|
| 1250 |
+
"step": 1550
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"epoch": 0.04754358161648178,
|
| 1254 |
+
"grad_norm": 0.6228764781021571,
|
| 1255 |
+
"learning_rate": 9.992778981528877e-06,
|
| 1256 |
+
"loss": 0.6196,
|
| 1257 |
+
"num_tokens": 468743583.0,
|
| 1258 |
+
"step": 1560
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.04784834816530538,
|
| 1262 |
+
"grad_norm": 0.6205726565240487,
|
| 1263 |
+
"learning_rate": 9.992525256714497e-06,
|
| 1264 |
+
"loss": 0.6074,
|
| 1265 |
+
"num_tokens": 471737961.0,
|
| 1266 |
+
"step": 1570
|
| 1267 |
+
},
|
| 1268 |
+
{
|
| 1269 |
+
"epoch": 0.048153114714128975,
|
| 1270 |
+
"grad_norm": 0.5869602201717057,
|
| 1271 |
+
"learning_rate": 9.992267154675535e-06,
|
| 1272 |
+
"loss": 0.6099,
|
| 1273 |
+
"num_tokens": 474795805.0,
|
| 1274 |
+
"step": 1580
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 0.04845788126295258,
|
| 1278 |
+
"grad_norm": 0.6445995250488186,
|
| 1279 |
+
"learning_rate": 9.992004675663475e-06,
|
| 1280 |
+
"loss": 0.6112,
|
| 1281 |
+
"num_tokens": 477809117.0,
|
| 1282 |
+
"step": 1590
|
| 1283 |
+
},
|
| 1284 |
+
{
|
| 1285 |
+
"epoch": 0.04876264781177618,
|
| 1286 |
+
"grad_norm": 0.6103612168796501,
|
| 1287 |
+
"learning_rate": 9.991737819934055e-06,
|
| 1288 |
+
"loss": 0.5964,
|
| 1289 |
+
"num_tokens": 480802930.0,
|
| 1290 |
+
"step": 1600
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.04906741436059978,
|
| 1294 |
+
"grad_norm": 0.6333844320175454,
|
| 1295 |
+
"learning_rate": 9.991466587747281e-06,
|
| 1296 |
+
"loss": 0.5979,
|
| 1297 |
+
"num_tokens": 483854212.0,
|
| 1298 |
+
"step": 1610
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.04937218090942338,
|
| 1302 |
+
"grad_norm": 0.6720644558500382,
|
| 1303 |
+
"learning_rate": 9.991190979367427e-06,
|
| 1304 |
+
"loss": 0.6028,
|
| 1305 |
+
"num_tokens": 486911723.0,
|
| 1306 |
+
"step": 1620
|
| 1307 |
+
},
|
| 1308 |
+
{
|
| 1309 |
+
"epoch": 0.04967694745824698,
|
| 1310 |
+
"grad_norm": 0.6257467769927044,
|
| 1311 |
+
"learning_rate": 9.990910995063027e-06,
|
| 1312 |
+
"loss": 0.6001,
|
| 1313 |
+
"num_tokens": 489973388.0,
|
| 1314 |
+
"step": 1630
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.049981714007070584,
|
| 1318 |
+
"grad_norm": 0.6076395236262263,
|
| 1319 |
+
"learning_rate": 9.99062663510688e-06,
|
| 1320 |
+
"loss": 0.6127,
|
| 1321 |
+
"num_tokens": 492950960.0,
|
| 1322 |
+
"step": 1640
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"epoch": 0.050286480555894186,
|
| 1326 |
+
"grad_norm": 0.5886754916747438,
|
| 1327 |
+
"learning_rate": 9.990337899776045e-06,
|
| 1328 |
+
"loss": 0.6092,
|
| 1329 |
+
"num_tokens": 496022992.0,
|
| 1330 |
+
"step": 1650
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"epoch": 0.05059124710471779,
|
| 1334 |
+
"grad_norm": 0.5960181526222773,
|
| 1335 |
+
"learning_rate": 9.99004478935185e-06,
|
| 1336 |
+
"loss": 0.6128,
|
| 1337 |
+
"num_tokens": 499023533.0,
|
| 1338 |
+
"step": 1660
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"epoch": 0.050896013653541385,
|
| 1342 |
+
"grad_norm": 0.5953397756091234,
|
| 1343 |
+
"learning_rate": 9.989747304119884e-06,
|
| 1344 |
+
"loss": 0.5999,
|
| 1345 |
+
"num_tokens": 501998703.0,
|
| 1346 |
+
"step": 1670
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.05120078020236499,
|
| 1350 |
+
"grad_norm": 0.584895120211458,
|
| 1351 |
+
"learning_rate": 9.989445444369994e-06,
|
| 1352 |
+
"loss": 0.6055,
|
| 1353 |
+
"num_tokens": 504912306.0,
|
| 1354 |
+
"step": 1680
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.05150554675118859,
|
| 1358 |
+
"grad_norm": 0.6377962999203446,
|
| 1359 |
+
"learning_rate": 9.989139210396293e-06,
|
| 1360 |
+
"loss": 0.6058,
|
| 1361 |
+
"num_tokens": 507940287.0,
|
| 1362 |
+
"step": 1690
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"epoch": 0.05181031330001219,
|
| 1366 |
+
"grad_norm": 0.5216876947745497,
|
| 1367 |
+
"learning_rate": 9.988828602497158e-06,
|
| 1368 |
+
"loss": 0.6187,
|
| 1369 |
+
"num_tokens": 510967111.0,
|
| 1370 |
+
"step": 1700
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 0.052115079848835795,
|
| 1374 |
+
"grad_norm": 0.5976651645934364,
|
| 1375 |
+
"learning_rate": 9.98851362097522e-06,
|
| 1376 |
+
"loss": 0.5964,
|
| 1377 |
+
"num_tokens": 513983124.0,
|
| 1378 |
+
"step": 1710
|
| 1379 |
+
},
|
| 1380 |
+
{
|
| 1381 |
+
"epoch": 0.05241984639765939,
|
| 1382 |
+
"grad_norm": 0.6763718773959415,
|
| 1383 |
+
"learning_rate": 9.988194266137383e-06,
|
| 1384 |
+
"loss": 0.6018,
|
| 1385 |
+
"num_tokens": 516951871.0,
|
| 1386 |
+
"step": 1720
|
| 1387 |
+
},
|
| 1388 |
+
{
|
| 1389 |
+
"epoch": 0.05272461294648299,
|
| 1390 |
+
"grad_norm": 0.5908803974280435,
|
| 1391 |
+
"learning_rate": 9.987870538294802e-06,
|
| 1392 |
+
"loss": 0.5964,
|
| 1393 |
+
"num_tokens": 519990414.0,
|
| 1394 |
+
"step": 1730
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"epoch": 0.053029379495306596,
|
| 1398 |
+
"grad_norm": 0.6265785359754944,
|
| 1399 |
+
"learning_rate": 9.987542437762896e-06,
|
| 1400 |
+
"loss": 0.6059,
|
| 1401 |
+
"num_tokens": 522974513.0,
|
| 1402 |
+
"step": 1740
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.0533341460441302,
|
| 1406 |
+
"grad_norm": 0.606965411131078,
|
| 1407 |
+
"learning_rate": 9.987209964861345e-06,
|
| 1408 |
+
"loss": 0.6001,
|
| 1409 |
+
"num_tokens": 526039695.0,
|
| 1410 |
+
"step": 1750
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.053638912592953794,
|
| 1414 |
+
"grad_norm": 0.658199574501422,
|
| 1415 |
+
"learning_rate": 9.98687311991409e-06,
|
| 1416 |
+
"loss": 0.6128,
|
| 1417 |
+
"num_tokens": 528979930.0,
|
| 1418 |
+
"step": 1760
|
| 1419 |
+
},
|
| 1420 |
+
{
|
| 1421 |
+
"epoch": 0.0539436791417774,
|
| 1422 |
+
"grad_norm": 0.6042645727517373,
|
| 1423 |
+
"learning_rate": 9.986531903249331e-06,
|
| 1424 |
+
"loss": 0.608,
|
| 1425 |
+
"num_tokens": 532010385.0,
|
| 1426 |
+
"step": 1770
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"epoch": 0.054248445690601,
|
| 1430 |
+
"grad_norm": 0.5483189537275404,
|
| 1431 |
+
"learning_rate": 9.986186315199528e-06,
|
| 1432 |
+
"loss": 0.5959,
|
| 1433 |
+
"num_tokens": 535016806.0,
|
| 1434 |
+
"step": 1780
|
| 1435 |
+
},
|
| 1436 |
+
{
|
| 1437 |
+
"epoch": 0.0545532122394246,
|
| 1438 |
+
"grad_norm": 0.6248724261843619,
|
| 1439 |
+
"learning_rate": 9.985836356101398e-06,
|
| 1440 |
+
"loss": 0.5961,
|
| 1441 |
+
"num_tokens": 537949771.0,
|
| 1442 |
+
"step": 1790
|
| 1443 |
+
},
|
| 1444 |
+
{
|
| 1445 |
+
"epoch": 0.054857978788248205,
|
| 1446 |
+
"grad_norm": 0.6267355747936748,
|
| 1447 |
+
"learning_rate": 9.985482026295916e-06,
|
| 1448 |
+
"loss": 0.593,
|
| 1449 |
+
"num_tokens": 541001861.0,
|
| 1450 |
+
"step": 1800
|
| 1451 |
+
},
|
| 1452 |
+
{
|
| 1453 |
+
"epoch": 0.0551627453370718,
|
| 1454 |
+
"grad_norm": 0.658428373202468,
|
| 1455 |
+
"learning_rate": 9.985123326128322e-06,
|
| 1456 |
+
"loss": 0.6037,
|
| 1457 |
+
"num_tokens": 543989524.0,
|
| 1458 |
+
"step": 1810
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.0554675118858954,
|
| 1462 |
+
"grad_norm": 0.5832078235901029,
|
| 1463 |
+
"learning_rate": 9.984760255948109e-06,
|
| 1464 |
+
"loss": 0.6021,
|
| 1465 |
+
"num_tokens": 546968879.0,
|
| 1466 |
+
"step": 1820
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.055772278434719005,
|
| 1470 |
+
"grad_norm": 0.6389770992791528,
|
| 1471 |
+
"learning_rate": 9.98439281610903e-06,
|
| 1472 |
+
"loss": 0.6109,
|
| 1473 |
+
"num_tokens": 549917192.0,
|
| 1474 |
+
"step": 1830
|
| 1475 |
+
},
|
| 1476 |
+
{
|
| 1477 |
+
"epoch": 0.05607704498354261,
|
| 1478 |
+
"grad_norm": 0.5907814850641283,
|
| 1479 |
+
"learning_rate": 9.984021006969093e-06,
|
| 1480 |
+
"loss": 0.6009,
|
| 1481 |
+
"num_tokens": 552985209.0,
|
| 1482 |
+
"step": 1840
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"epoch": 0.05638181153236621,
|
| 1486 |
+
"grad_norm": 0.6302612593484054,
|
| 1487 |
+
"learning_rate": 9.983644828890563e-06,
|
| 1488 |
+
"loss": 0.5989,
|
| 1489 |
+
"num_tokens": 555998654.0,
|
| 1490 |
+
"step": 1850
|
| 1491 |
+
},
|
| 1492 |
+
{
|
| 1493 |
+
"epoch": 0.056686578081189806,
|
| 1494 |
+
"grad_norm": 0.5404399265212917,
|
| 1495 |
+
"learning_rate": 9.983264282239967e-06,
|
| 1496 |
+
"loss": 0.6118,
|
| 1497 |
+
"num_tokens": 558972706.0,
|
| 1498 |
+
"step": 1860
|
| 1499 |
+
},
|
| 1500 |
+
{
|
| 1501 |
+
"epoch": 0.05699134463001341,
|
| 1502 |
+
"grad_norm": 0.6668943312807988,
|
| 1503 |
+
"learning_rate": 9.982879367388083e-06,
|
| 1504 |
+
"loss": 0.61,
|
| 1505 |
+
"num_tokens": 561941114.0,
|
| 1506 |
+
"step": 1870
|
| 1507 |
+
},
|
| 1508 |
+
{
|
| 1509 |
+
"epoch": 0.05729611117883701,
|
| 1510 |
+
"grad_norm": 0.6465293149801645,
|
| 1511 |
+
"learning_rate": 9.982490084709946e-06,
|
| 1512 |
+
"loss": 0.5947,
|
| 1513 |
+
"num_tokens": 564917589.0,
|
| 1514 |
+
"step": 1880
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 0.057600877727660614,
|
| 1518 |
+
"grad_norm": 0.6746757663556419,
|
| 1519 |
+
"learning_rate": 9.982096434584851e-06,
|
| 1520 |
+
"loss": 0.6181,
|
| 1521 |
+
"num_tokens": 567836529.0,
|
| 1522 |
+
"step": 1890
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.05790564427648421,
|
| 1526 |
+
"grad_norm": 0.5706015932809062,
|
| 1527 |
+
"learning_rate": 9.981698417396341e-06,
|
| 1528 |
+
"loss": 0.5953,
|
| 1529 |
+
"num_tokens": 570916570.0,
|
| 1530 |
+
"step": 1900
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"epoch": 0.05821041082530781,
|
| 1534 |
+
"grad_norm": 0.6048135316190368,
|
| 1535 |
+
"learning_rate": 9.981296033532221e-06,
|
| 1536 |
+
"loss": 0.6054,
|
| 1537 |
+
"num_tokens": 573986324.0,
|
| 1538 |
+
"step": 1910
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 0.058515177374131415,
|
| 1542 |
+
"grad_norm": 0.5692749712433784,
|
| 1543 |
+
"learning_rate": 9.980889283384547e-06,
|
| 1544 |
+
"loss": 0.6058,
|
| 1545 |
+
"num_tokens": 576974706.0,
|
| 1546 |
+
"step": 1920
|
| 1547 |
+
},
|
| 1548 |
+
{
|
| 1549 |
+
"epoch": 0.05881994392295502,
|
| 1550 |
+
"grad_norm": 0.604338117924098,
|
| 1551 |
+
"learning_rate": 9.980478167349631e-06,
|
| 1552 |
+
"loss": 0.6199,
|
| 1553 |
+
"num_tokens": 580018172.0,
|
| 1554 |
+
"step": 1930
|
| 1555 |
+
},
|
| 1556 |
+
{
|
| 1557 |
+
"epoch": 0.05912471047177862,
|
| 1558 |
+
"grad_norm": 0.6830120859009248,
|
| 1559 |
+
"learning_rate": 9.980062685828036e-06,
|
| 1560 |
+
"loss": 0.6057,
|
| 1561 |
+
"num_tokens": 583000914.0,
|
| 1562 |
+
"step": 1940
|
| 1563 |
+
},
|
| 1564 |
+
{
|
| 1565 |
+
"epoch": 0.059429477020602216,
|
| 1566 |
+
"grad_norm": 0.6600306750958782,
|
| 1567 |
+
"learning_rate": 9.979642839224579e-06,
|
| 1568 |
+
"loss": 0.6062,
|
| 1569 |
+
"num_tokens": 585955930.0,
|
| 1570 |
+
"step": 1950
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.05973424356942582,
|
| 1574 |
+
"grad_norm": 0.7728378701939743,
|
| 1575 |
+
"learning_rate": 9.979218627948333e-06,
|
| 1576 |
+
"loss": 0.6125,
|
| 1577 |
+
"num_tokens": 588924595.0,
|
| 1578 |
+
"step": 1960
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.06003901011824942,
|
| 1582 |
+
"grad_norm": 0.6981817636130082,
|
| 1583 |
+
"learning_rate": 9.978790052412624e-06,
|
| 1584 |
+
"loss": 0.6021,
|
| 1585 |
+
"num_tokens": 591944037.0,
|
| 1586 |
+
"step": 1970
|
| 1587 |
+
},
|
| 1588 |
+
{
|
| 1589 |
+
"epoch": 0.060343776667073024,
|
| 1590 |
+
"grad_norm": 0.6602287311975624,
|
| 1591 |
+
"learning_rate": 9.978357113035025e-06,
|
| 1592 |
+
"loss": 0.6212,
|
| 1593 |
+
"num_tokens": 594948638.0,
|
| 1594 |
+
"step": 1980
|
| 1595 |
+
},
|
| 1596 |
+
{
|
| 1597 |
+
"epoch": 0.060648543215896626,
|
| 1598 |
+
"grad_norm": 0.5880700660748177,
|
| 1599 |
+
"learning_rate": 9.977919810237367e-06,
|
| 1600 |
+
"loss": 0.5991,
|
| 1601 |
+
"num_tokens": 597995285.0,
|
| 1602 |
+
"step": 1990
|
| 1603 |
+
},
|
| 1604 |
+
{
|
| 1605 |
+
"epoch": 0.06095330976472022,
|
| 1606 |
+
"grad_norm": 0.4944145943397841,
|
| 1607 |
+
"learning_rate": 9.977478144445725e-06,
|
| 1608 |
+
"loss": 0.5982,
|
| 1609 |
+
"num_tokens": 601009341.0,
|
| 1610 |
+
"step": 2000
|
| 1611 |
+
}
|
| 1612 |
+
],
|
| 1613 |
+
"logging_steps": 10,
|
| 1614 |
+
"max_steps": 32812,
|
| 1615 |
+
"num_input_tokens_seen": 0,
|
| 1616 |
+
"num_train_epochs": 9223372036854775807,
|
| 1617 |
+
"save_steps": 500,
|
| 1618 |
+
"stateful_callbacks": {
|
| 1619 |
+
"TrainerControl": {
|
| 1620 |
+
"args": {
|
| 1621 |
+
"should_epoch_stop": false,
|
| 1622 |
+
"should_evaluate": false,
|
| 1623 |
+
"should_log": false,
|
| 1624 |
+
"should_save": true,
|
| 1625 |
+
"should_training_stop": false
|
| 1626 |
+
},
|
| 1627 |
+
"attributes": {}
|
| 1628 |
+
}
|
| 1629 |
+
},
|
| 1630 |
+
"total_flos": 2.2174801484358615e+18,
|
| 1631 |
+
"train_batch_size": 2,
|
| 1632 |
+
"trial_name": null,
|
| 1633 |
+
"trial_params": null
|
| 1634 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99a3c59545a23db9c385146f1715d0778ee8a1d40421439adb1b2cc46a3150d5
|
| 3 |
+
size 7505
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|