--- language: - tr - en - de - es - fr - ru - zh - ja - ko license: mit tags: - turkish - tΓΌrkiye - ai - lamapi - next-codex - coder - codex - text-generation - open-source - 30b - moe - mixture-of-experts - code-generation - coding - llm - transformer - artificial-intelligence pipeline_tag: text-generation datasets: - mlabonne/FineTome-100k - google/code_x_glue_ct_code_to_text - bigcode/the-stack-v2 - neulab/agent-data-collection - openai/gsm8k - princeton-nlp/SWE-bench_Verified - microsoft/orca-math-word-problems-200k - qwedsacf/competition_math - hotpotqa/hotpot_qa - wics/strategy-qa - glaiveai/glaive-function-calling-v2 - Anthropic/hh-rlhf - ccdv/cnn_dailymail - allenai/ai2_arc - allenai/sciq - google-research-datasets/mbpp - openai/openai_humaneval - allenai/openbookqa - baber/piqa - allenai/winogrande - Rowan/hellaswag - allenai/social_i_qa - databricks/databricks-dolly-15k - truthfulqa/truthful_qa - HuggingFaceH4/ultrachat_200k - OpenAssistant/oasst1 - iamtarun/python_code_instructions_18k_alpaca - nickrosh/Evol-Instruct-Code-80k-v1 - arcee-ai/agent-data - GreenerPastures/All-Your-Base-Full - FreedomIntelligence/Socratic - qihoo360/Light-R1-SFTData - dongguanting/ARPO-SFT-54K library_name: transformers --- ![30bcoder](https://cdn-uploads.huggingface.co/production/uploads/67d46bc5fe6ad6f6511d6f44/uolLKxUkpOc_eQYIysPs_.png) # πŸ’» Next-Codex (L846MoE) ### Code your future with our models. [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Architecture: MoE](https://img.shields.io/badge/Architecture-MoE-violet.svg)]() [![HuggingFace](https://img.shields.io/badge/πŸ€—-Lamapi/next--codex-orange.svg)](https://huggingface.co/Lamapi/next-codex) --- ## πŸ“– Overview **Next-Codex** is a high-performance, specialized **Mixture-of-Experts (MoE)** Large Language Model designed specifically for code generation, debugging, and software engineering tasks. Unlike traditional dense models, **Next-Codex** utilizes a sparse architecture with **30 Billion total parameters**, but only activates **3 Billion parameters per token**. This unique design allows it to deliver the deep reasoning capabilities of a massive model while maintaining the ultra-low latency and inference cost of a lightweight 3B model. It is fine-tuned on a massive corpus of code across 20+ programming languages, making it the most efficient coding assistant in its class. --- ## ⚑ Highlights - πŸ‡ΉπŸ‡· **TΓΌrkiye’s First Specialized MoE Coding Model:** Designed for speed and precision. - πŸš€ **Hyper-Efficient Inference:** Runs with **3B active parameters**, enabling deployment on consumer GPUs (e.g., RTX 3090/4090). - πŸ’» **SOTA Coding Performance:** Surpasses Claude Sonnet 4 and rivals o3-High in Python & JavaScript benchmarks. - 🌍 **Polyglot Programming:** Master-level proficiency in Python, JS/TS, Rust, Go, C++, SQL, and Swift. - 🧠 **Context-Aware Debugging:** Excellent at understanding large codebases and suggesting architectural improvements. - 🏒 **Production Ready:** Optimized for autocomplete, unit test generation, and docstring creation. --- ## πŸ“Š Benchmark Performance (Coding & Logic) **Next-Codex** achieves state-of-the-art results among open-weights coding models, balancing extreme efficiency with high accuracy. Benchmarks are being conducted... --- ## πŸš€ Installation & Usage **Note:** Due to the MoE architecture, this model is memory efficient. You can run it comfortably on 24GB VRAM GPUs (4-bit quantization highly recommended for lower VRAM). ``` !pip install unsloth transformers ``` ```python from unsloth import FastLanguageModel # Load the MoE Model model, tokenizer = FastLanguageModel.from_pretrained( "Lamapi/next-codex", load_in_4bit = True, # Optimized for 24GB VRAM ) messages = [ {"role": "system", "content": "You are Next-Codex, an expert software engineer and AI coding assistant."}, {"role" : "user", "content" : "Write a highly optimized Rust function to calculate the Fibonacci sequence using memoization."} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 2048, temperature = 0.2, # Lower temperature for code precision top_p = 0.95, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` --- ## 🧩 Key Features | Feature | Description | | :--- | :--- | | πŸ”€ **Smart Routing (MoE)** | Dynamically routes tokens to the best "expert" layers, activating only 3B params for speed. | | πŸ› οΈ **Full-Stack Mastery** | Trained on frontend (React, Vue), backend (Django, Spring), and systems (C, Rust) code. | | πŸ‡ΉπŸ‡· **Code Support** | Exceptional ability to understand Turkish variable names and comments in legacy codebases. | | 🐞 **Deep Debugging** | Analyzes stack traces and logic errors to provide instant fixes. | | πŸ“ **Docstring & Testing** | Automatically generates Javadoc, PyDoc, and Unit Tests (Pytest/Jest). | | πŸ”’ **Secure Coding** | Aligned to avoid common vulnerabilities (SQLi, XSS) in generated code. | --- ## πŸ“ Model Specifications | Specification | Details | | :--- | :--- | | **Architecture** | Mixture of Experts (MoE) Transformer | | **Total Parameters** | 30 Billion | | **Active Parameters** | 3 Billion (per token) | | **Context Window** | 32k Tokens | | **Experts** | 8 Experts (Top-2 Routing) | | **Training Data** | 1T+ Tokens of Code (The Stack v2, GitHub, Synthetic) | | **Quantization** | GGUF, AWQ, GPTQ supported | --- ## 🎯 Ideal Use Cases * **IDE Autocomplete Plugins** β€” Low latency makes it perfect for "Copilot" style completions. * **Legacy Code Refactoring** β€” Converting outdated code to modern standards (e.g., Java 8 to Java 21). * **SQL Generation** β€” Text-to-SQL for complex data analytics. * **Turkish/English Development** β€” Teams working in bilingual environments. * **Algorithm Optimization** β€” Reducing time complexity of existing functions. --- ## πŸ“„ License Licensed under the **MIT License** β€” free for commercial and non-commercial use. --- ## πŸ“ž Contact & Support * πŸ“§ **Email:** [lamapicontact@gmail.com](mailto:lamapicontact@gmail.com) * πŸ€— **HuggingFace:** [Lamapi](https://huggingface.co/Lamapi) --- > **Next-Codex** β€” Smart as a giant, fast as a lightweight. The future of coding is MoE. [![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)