Kiria-Nozan commited on
Commit
18e359a
·
verified ·
1 Parent(s): 3268dfc

initial release

Browse files
DLM_emb_model.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import argparse
3
+ import json
4
+ import numpy as np
5
+ import pandas as pd
6
+ from tqdm import tqdm
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.optim as optim
10
+ from torch.utils.data import Dataset, DataLoader
11
+ from transformers import AutoModel, AutoTokenizer
12
+ from sklearn.model_selection import KFold
13
+ from sklearn.metrics import average_precision_score
14
+ from torch.nn.utils.rnn import pad_sequence
15
+ from sklearn.cluster import AgglomerativeClustering
16
+ from Bio import Phylo
17
+ from triton.language import bfloat16
18
+ from scipy.stats import pearsonr, spearmanr
19
+ import json
20
+ import itertools
21
+ import logging
22
+
23
+ import hydra
24
+ from hydra import compose, initialize, initialize_config_dir
25
+ import models
26
+ from collections import OrderedDict
27
+ import noise_schedule
28
+
29
+ import torch.nn.functional as F
30
+ import ast
31
+ from omegaconf import DictConfig, ListConfig
32
+ from huggingface_hub import PyTorchModelHubMixin
33
+
34
+ # current_directory = Path(__file__).parent
35
+ current_directory = Path('/data2/tianang/projects/Synergy')
36
+
37
+ with initialize_config_dir(config_dir="/data2/tianang/projects/mdlm/configs"):
38
+ config = compose(config_name="config")
39
+
40
+ class mol_emb_mdlm(nn.Module):
41
+ def __init__(self, config, vocab_size, ckpt_path, mask_index):
42
+ super(mol_emb_mdlm, self).__init__()
43
+ self.config = config
44
+ self.vocab_size = vocab_size
45
+ self.mask_index = mask_index
46
+ self.ckpt_path = ckpt_path
47
+ self.parameterization = self.config.parameterization
48
+ self.time_conditioning = self.config.time_conditioning
49
+ self.backbone = self.load_DIT() # hidden_size = 768
50
+ # print(self.bert.config.max_position_embeddings)
51
+ self.noise = noise_schedule.get_noise(self.config)
52
+
53
+ def _process_sigma(self, sigma):
54
+ if sigma is None:
55
+ assert self.parameterization == 'ar'
56
+ return sigma
57
+ if sigma.ndim > 1:
58
+ sigma = sigma.squeeze(-1)
59
+ if not self.time_conditioning:
60
+ sigma = torch.zeros_like(sigma)
61
+ assert sigma.ndim == 1, sigma.shape
62
+ return sigma
63
+
64
+ def _sample_t(self, n, device):
65
+ sampling_eps = 1e-3
66
+ _eps_t = torch.rand(n, device=device) * 0 # 因为是要做性质预测了这里
67
+ t = (1 - sampling_eps) * _eps_t + sampling_eps
68
+ return t * 0
69
+
70
+ def _forward(self, x, sigma, attnmask): # TODO: non pad 不一样的地方
71
+ sigma = self._process_sigma(sigma)
72
+ with torch.cuda.amp.autocast(dtype=torch.float32):
73
+ x = self.backbone.vocab_embed(x)
74
+ c = F.silu(self.backbone.sigma_map(sigma))
75
+ rotary_cos_sin = self.backbone.rotary_emb(x)
76
+
77
+ with torch.cuda.amp.autocast(dtype=torch.bfloat16):
78
+ for i in range(len(self.backbone.blocks)):
79
+ x = self.backbone.blocks[i](x, rotary_cos_sin, c, seqlens=None, attnmask=attnmask) # TODO: non pad 不一样的地方
80
+
81
+ return x
82
+
83
+ def q_xt(self, x, move_chance):
84
+ """Computes the noisy sample xt.
85
+
86
+ Args:
87
+ x: int torch.Tensor with shape (batch_size,
88
+ diffusion_model_input_length), input.
89
+ move_chance: float torch.Tensor with shape (batch_size, 1).
90
+ """
91
+ move_indices = torch.rand(*x.shape, device=x.device) < move_chance
92
+ xt = torch.where(move_indices, self.mask_index, x)
93
+ return xt
94
+
95
+ def forward(self, input_ids, attention_mask=None):
96
+ t = self._sample_t(input_ids.shape[0], input_ids.device)
97
+ sigma, dsigma = self.noise(t)
98
+ unet_conditioning = sigma[:, None]
99
+ move_chance = 1 - torch.exp(-sigma[:, None])
100
+ xt = self.q_xt(input_ids, move_chance)
101
+ outputs = self._forward(xt, unet_conditioning, attnmask = attention_mask) # TODO: non pad 不一样的地方
102
+ return outputs
103
+
104
+ def load_DIT(self):
105
+ backbone = models.dit.DIT_non_pad(self.config, vocab_size=self.vocab_size) # TODO: non pad 不一样的地方
106
+ lightning_ckpt = torch.load(self.ckpt_path, map_location='cpu')
107
+ state_dict = lightning_ckpt['state_dict']
108
+
109
+ new_sd = OrderedDict()
110
+ for k, v in state_dict.items():
111
+ if k.startswith('backbone.'):
112
+ new_key = k[len('backbone.'):]
113
+ else:
114
+ new_key = k
115
+ new_sd[new_key] = v
116
+
117
+ backbone.load_state_dict(new_sd, strict=False)
118
+
119
+ return backbone
120
+
121
+
122
+ class MolEmbDLM(nn.Module, PyTorchModelHubMixin):
123
+ def __init__(self, config, vocab_size, ckpt_path=None, mask_index=0, load_backbone=True):
124
+ super().__init__()
125
+ self.config = config
126
+ self.vocab_size = vocab_size
127
+ self.mask_index = mask_index
128
+ self.parameterization = config.parameterization
129
+ self.time_conditioning = config.time_conditioning
130
+ # 构建 backbone
131
+ self.backbone = self._build_backbone()
132
+ # 如果给了 ckpt_path 就加载,否则假设后面会用 state_dict 覆盖(Hub 场景)
133
+ if ckpt_path is not None and load_backbone:
134
+ print("Loading backbone from {}".format(ckpt_path))
135
+ self._load_lightning_ckpt(ckpt_path)
136
+
137
+ def _build_backbone(self):
138
+ return models.dit.DIT_non_pad(self.config, vocab_size=self.vocab_size)
139
+
140
+ def _load_lightning_ckpt(self, ckpt_path):
141
+ sd_full = torch.load(ckpt_path, map_location='cpu')
142
+ sd = sd_full['state_dict']
143
+ new_sd = {}
144
+ for k,v in sd.items():
145
+ if k.startswith('backbone.'):
146
+ new_sd[k[len('backbone.'):]] = v
147
+ self.backbone.load_state_dict(new_sd, strict=False)
148
+
149
+
150
+ def build_hf_config(hydra_cfg, tokenizer):
151
+ return {
152
+ "model_type": "mol_emb_raw", # 仅标识,不影响逻辑
153
+ "vocab_size": len(tokenizer.get_vocab()),
154
+ "hidden_size": hydra_cfg.model.hidden_size,
155
+ "n_blocks": hydra_cfg.model.n_blocks,
156
+ "n_heads": hydra_cfg.model.n_heads,
157
+ "max_position_embeddings": hydra_cfg.model.length,
158
+ "parameterization": hydra_cfg.parameterization,
159
+ "time_conditioning": hydra_cfg.time_conditioning,
160
+ "noise_schedule_type": hydra_cfg.noise.type,
161
+ "sigma_min": hydra_cfg.noise.sigma_min,
162
+ "sigma_max": hydra_cfg.noise.sigma_max,
163
+ "mask_index": tokenizer.mask_token_id,
164
+ "tokenizer_name_or_path": hydra_cfg.data.tokenizer_name_or_path
165
+ }
166
+
167
+ if __name__ == '__main__':
168
+ model_name = "ibm-research/materials.selfies-ted"
169
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
170
+
171
+ DIT_ckpt_path = '/data2/tianang/projects/mdlm/Checkpoints_fangping/1-255000-fine-tune.ckpt'
172
+ model = MolEmbDLM(config, len(tokenizer.get_vocab()), DIT_ckpt_path, tokenizer.mask_token_id)
173
+
174
+ hf_config = build_hf_config(config, tokenizer)
175
+
176
+ EXPORT_DIR = "/data2/tianang/projects/mdlm/huggingface/huggingface_model"
177
+ model.save_pretrained(EXPORT_DIR, config=hf_config) # 生成:pytorch_model.bin + config.json
178
+ tokenizer.save_pretrained(EXPORT_DIR)
179
+
180
+
181
+
__pycache__/DLM_emb_model.cpython-39.pyc ADDED
Binary file (5.68 kB). View file
 
example.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from DLM_emb_model import MolEmbDLM
2
+ model = MolEmbDLM.from_pretrained("Kiria-Nozan/ApexOracle")
3
+ model.eval()
huggingface_config.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import argparse
3
+ import json
4
+ import numpy as np
5
+ import pandas as pd
6
+ from tqdm import tqdm
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.optim as optim
10
+ from torch.utils.data import Dataset, DataLoader
11
+ from transformers import AutoModel, AutoTokenizer
12
+ from sklearn.model_selection import KFold
13
+ from sklearn.metrics import average_precision_score
14
+ from torch.nn.utils.rnn import pad_sequence
15
+ from sklearn.cluster import AgglomerativeClustering
16
+ from Bio import Phylo
17
+ from triton.language import bfloat16
18
+ from scipy.stats import pearsonr, spearmanr
19
+ import json
20
+ import itertools
21
+ import logging
22
+
23
+ import hydra
24
+ from hydra import compose, initialize, initialize_config_dir
25
+ import models
26
+ from collections import OrderedDict
27
+ import noise_schedule
28
+
29
+ import torch.nn.functional as F
30
+ import ast
31
+ from omegaconf import DictConfig, ListConfig
32
+ from huggingface_hub import PyTorchModelHubMixin
33
+
34
+ # current_directory = Path(__file__).parent
35
+ current_directory = Path('/data2/tianang/projects/Synergy')
36
+
37
+ with initialize_config_dir(config_dir="/data2/tianang/projects/mdlm/configs"):
38
+ config = compose(config_name="config")
39
+
40
+ class mol_emb_mdlm(nn.Module):
41
+ def __init__(self, config, vocab_size, ckpt_path, mask_index):
42
+ super(mol_emb_mdlm, self).__init__()
43
+ self.config = config
44
+ self.vocab_size = vocab_size
45
+ self.mask_index = mask_index
46
+ self.ckpt_path = ckpt_path
47
+ self.parameterization = self.config.parameterization
48
+ self.time_conditioning = self.config.time_conditioning
49
+ self.backbone = self.load_DIT() # hidden_size = 768
50
+ # print(self.bert.config.max_position_embeddings)
51
+ self.noise = noise_schedule.get_noise(self.config)
52
+
53
+ def _process_sigma(self, sigma):
54
+ if sigma is None:
55
+ assert self.parameterization == 'ar'
56
+ return sigma
57
+ if sigma.ndim > 1:
58
+ sigma = sigma.squeeze(-1)
59
+ if not self.time_conditioning:
60
+ sigma = torch.zeros_like(sigma)
61
+ assert sigma.ndim == 1, sigma.shape
62
+ return sigma
63
+
64
+ def _sample_t(self, n, device):
65
+ sampling_eps = 1e-3
66
+ _eps_t = torch.rand(n, device=device) * 0 # 因为是要做性质预测了这里
67
+ t = (1 - sampling_eps) * _eps_t + sampling_eps
68
+ return t * 0
69
+
70
+ def _forward(self, x, sigma, attnmask): # TODO: non pad 不一样的地方
71
+ sigma = self._process_sigma(sigma)
72
+ with torch.cuda.amp.autocast(dtype=torch.float32):
73
+ x = self.backbone.vocab_embed(x)
74
+ c = F.silu(self.backbone.sigma_map(sigma))
75
+ rotary_cos_sin = self.backbone.rotary_emb(x)
76
+
77
+ with torch.cuda.amp.autocast(dtype=torch.bfloat16):
78
+ for i in range(len(self.backbone.blocks)):
79
+ x = self.backbone.blocks[i](x, rotary_cos_sin, c, seqlens=None, attnmask=attnmask) # TODO: non pad 不一样的地方
80
+
81
+ return x
82
+
83
+ def q_xt(self, x, move_chance):
84
+ """Computes the noisy sample xt.
85
+
86
+ Args:
87
+ x: int torch.Tensor with shape (batch_size,
88
+ diffusion_model_input_length), input.
89
+ move_chance: float torch.Tensor with shape (batch_size, 1).
90
+ """
91
+ move_indices = torch.rand(*x.shape, device=x.device) < move_chance
92
+ xt = torch.where(move_indices, self.mask_index, x)
93
+ return xt
94
+
95
+ def forward(self, input_ids, attention_mask=None):
96
+ t = self._sample_t(input_ids.shape[0], input_ids.device)
97
+ sigma, dsigma = self.noise(t)
98
+ unet_conditioning = sigma[:, None]
99
+ move_chance = 1 - torch.exp(-sigma[:, None])
100
+ xt = self.q_xt(input_ids, move_chance)
101
+ outputs = self._forward(xt, unet_conditioning, attnmask = attention_mask) # TODO: non pad 不一样的地方
102
+ return outputs
103
+
104
+ def load_DIT(self):
105
+ backbone = models.dit.DIT_non_pad(self.config, vocab_size=self.vocab_size) # TODO: non pad 不一样的地方
106
+ lightning_ckpt = torch.load(self.ckpt_path, map_location='cpu')
107
+ state_dict = lightning_ckpt['state_dict']
108
+
109
+ new_sd = OrderedDict()
110
+ for k, v in state_dict.items():
111
+ if k.startswith('backbone.'):
112
+ new_key = k[len('backbone.'):]
113
+ else:
114
+ new_key = k
115
+ new_sd[new_key] = v
116
+
117
+ backbone.load_state_dict(new_sd, strict=False)
118
+
119
+ return backbone
120
+
121
+
122
+ class MolEmbDLM(mol_emb_mdlm, PyTorchModelHubMixin):
123
+ """
124
+ 继承你的原模型 + Hub Mixin。
125
+ 不重写任何方法,使用默认 _save_pretrained/_from_pretrained。
126
+ """
127
+ pass
128
+
129
+ def build_hf_config(hydra_cfg, tokenizer):
130
+ return {
131
+ "model_type": "mol_emb_raw", # 仅标识,不影响逻辑
132
+ "vocab_size": len(tokenizer.get_vocab()),
133
+ "hidden_size": hydra_cfg.model.hidden_size,
134
+ "n_blocks": hydra_cfg.model.n_blocks,
135
+ "n_heads": hydra_cfg.model.n_heads,
136
+ "max_position_embeddings": hydra_cfg.model.length,
137
+ "parameterization": hydra_cfg.parameterization,
138
+ "time_conditioning": hydra_cfg.time_conditioning,
139
+ "noise_schedule_type": hydra_cfg.noise.type,
140
+ "sigma_min": hydra_cfg.noise.sigma_min,
141
+ "sigma_max": hydra_cfg.noise.sigma_max,
142
+ "mask_index": tokenizer.mask_token_id,
143
+ "tokenizer_name_or_path": hydra_cfg.data.tokenizer_name_or_path
144
+ }
145
+
146
+ if __name__ == '__main__':
147
+ model_name = "ibm-research/materials.selfies-ted"
148
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
149
+
150
+ DIT_ckpt_path = '/data2/tianang/projects/mdlm/Checkpoints_fangping/1-255000-fine-tune.ckpt'
151
+ model = MolEmbDLM(config, len(tokenizer.get_vocab()), DIT_ckpt_path, tokenizer.mask_token_id)
152
+
153
+ hf_config = build_hf_config(config, tokenizer)
154
+
155
+ EXPORT_DIR = "/data2/tianang/projects/mdlm/huggingface/huggingface_model"
156
+ model.save_pretrained(EXPORT_DIR, config=hf_config) # 生成:pytorch_model.bin + config.json
157
+ tokenizer.save_pretrained(EXPORT_DIR)
158
+
159
+
160
+