Upload migrated model for transformers 5.0+ compatibility
Browse files- 1_Pooling/config.json +10 -0
- README.md +61 -0
- config.json +101 -0
- config_sentence_transformers.json +9 -0
- configuration_nvembed.py +92 -0
- instructions.json +80 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +311 -0
- modeling_nvembed.py +470 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 4096,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": false
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
library_name: transformers
|
| 4 |
+
tags:
|
| 5 |
+
- nv-embed
|
| 6 |
+
- embedding
|
| 7 |
+
- retrieval
|
| 8 |
+
- transformers
|
| 9 |
+
base_model: nvidia/NV-Embed-v2
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# NV-Embed-v2 (Migrated for transformers 5.0+ compatibility)
|
| 13 |
+
|
| 14 |
+
This is a migrated version of [nvidia/NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2) that is compatible with transformers 5.0.0 and later versions.
|
| 15 |
+
|
| 16 |
+
## Changes from Original
|
| 17 |
+
|
| 18 |
+
The only change made is adding an `all_tied_weights_keys` property to the `NVEmbedModel` class in `modeling_nvembed.py`. This property provides backward compatibility with the transformers library, which changed from using `_tied_weights_keys` (a class attribute) to `all_tied_weights_keys` (a property that returns a dict) in version 5.0.0.
|
| 19 |
+
|
| 20 |
+
### The Patch
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
@property
|
| 24 |
+
def all_tied_weights_keys(self):
|
| 25 |
+
"""Compatibility property for transformers >= 5.0.0."""
|
| 26 |
+
if hasattr(self, '_tied_weights_keys') and self._tied_weights_keys:
|
| 27 |
+
return {key: key for key in self._tied_weights_keys}
|
| 28 |
+
return {}
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
from transformers import AutoModel, AutoTokenizer
|
| 35 |
+
|
| 36 |
+
model = AutoModel.from_pretrained("Hyukkyu/nv-embed-v2", trust_remote_code=True)
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained("Hyukkyu/nv-embed-v2", trust_remote_code=True)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Original Model
|
| 41 |
+
|
| 42 |
+
This model is based on [nvidia/NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2). Please refer to the original repository for:
|
| 43 |
+
- Model architecture details
|
| 44 |
+
- Training information
|
| 45 |
+
- Benchmarks and evaluation results
|
| 46 |
+
- Citation information
|
| 47 |
+
|
| 48 |
+
## License
|
| 49 |
+
|
| 50 |
+
This model inherits the license from the original repository. Please check [nvidia/NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2) for license details.
|
| 51 |
+
|
| 52 |
+
## Migration Tool
|
| 53 |
+
|
| 54 |
+
This model was migrated using the GenZ model migration tool. The migration script is available at:
|
| 55 |
+
https://github.com/your-repo/GenZ/tree/main/scripts/preprocess/model
|
| 56 |
+
|
| 57 |
+
## Compatibility
|
| 58 |
+
|
| 59 |
+
- **transformers**: >= 5.0.0
|
| 60 |
+
- **torch**: >= 2.0.0
|
| 61 |
+
- **Python**: >= 3.9
|
config.json
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
| 3 |
+
"add_eos": true,
|
| 4 |
+
"add_pad_token": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"NVEmbedModel"
|
| 7 |
+
],
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_nvembed.NVEmbedConfig",
|
| 10 |
+
"AutoModel": "modeling_nvembed.NVEmbedModel"
|
| 11 |
+
},
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"is_mask_instruction": true,
|
| 14 |
+
"latent_attention_config": {
|
| 15 |
+
"model_type": "latent_attention"
|
| 16 |
+
},
|
| 17 |
+
"mask_type": "b",
|
| 18 |
+
"model_type": "nvembed",
|
| 19 |
+
"padding_side": "right",
|
| 20 |
+
"text_config": {
|
| 21 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
| 22 |
+
"add_cross_attention": false,
|
| 23 |
+
"architectures": [
|
| 24 |
+
"MistralModel"
|
| 25 |
+
],
|
| 26 |
+
"attention_dropout": 0.0,
|
| 27 |
+
"bad_words_ids": null,
|
| 28 |
+
"begin_suppress_tokens": null,
|
| 29 |
+
"bos_token_id": 1,
|
| 30 |
+
"chunk_size_feed_forward": 0,
|
| 31 |
+
"cross_attention_hidden_size": null,
|
| 32 |
+
"decoder_start_token_id": null,
|
| 33 |
+
"diversity_penalty": 0.0,
|
| 34 |
+
"do_sample": false,
|
| 35 |
+
"early_stopping": false,
|
| 36 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 37 |
+
"eos_token_id": 2,
|
| 38 |
+
"exponential_decay_length_penalty": null,
|
| 39 |
+
"finetuning_task": null,
|
| 40 |
+
"forced_bos_token_id": null,
|
| 41 |
+
"forced_eos_token_id": null,
|
| 42 |
+
"hidden_act": "silu",
|
| 43 |
+
"hidden_size": 4096,
|
| 44 |
+
"id2label": {
|
| 45 |
+
"0": "LABEL_0",
|
| 46 |
+
"1": "LABEL_1"
|
| 47 |
+
},
|
| 48 |
+
"initializer_range": 0.02,
|
| 49 |
+
"intermediate_size": 14336,
|
| 50 |
+
"is_decoder": false,
|
| 51 |
+
"is_encoder_decoder": false,
|
| 52 |
+
"label2id": {
|
| 53 |
+
"LABEL_0": 0,
|
| 54 |
+
"LABEL_1": 1
|
| 55 |
+
},
|
| 56 |
+
"length_penalty": 1.0,
|
| 57 |
+
"max_length": 20,
|
| 58 |
+
"max_position_embeddings": 32768,
|
| 59 |
+
"min_length": 0,
|
| 60 |
+
"model_type": "bidir_mistral",
|
| 61 |
+
"no_repeat_ngram_size": 0,
|
| 62 |
+
"num_attention_heads": 32,
|
| 63 |
+
"num_beam_groups": 1,
|
| 64 |
+
"num_beams": 1,
|
| 65 |
+
"num_hidden_layers": 32,
|
| 66 |
+
"num_key_value_heads": 8,
|
| 67 |
+
"num_return_sequences": 1,
|
| 68 |
+
"output_attentions": false,
|
| 69 |
+
"output_hidden_states": false,
|
| 70 |
+
"output_scores": false,
|
| 71 |
+
"pad_token_id": null,
|
| 72 |
+
"prefix": null,
|
| 73 |
+
"problem_type": null,
|
| 74 |
+
"pruned_heads": {},
|
| 75 |
+
"remove_invalid_values": false,
|
| 76 |
+
"repetition_penalty": 1.0,
|
| 77 |
+
"return_dict": true,
|
| 78 |
+
"return_dict_in_generate": false,
|
| 79 |
+
"rms_norm_eps": 1e-05,
|
| 80 |
+
"rope_theta": 10000.0,
|
| 81 |
+
"sep_token_id": null,
|
| 82 |
+
"sliding_window": 4096,
|
| 83 |
+
"suppress_tokens": null,
|
| 84 |
+
"task_specific_params": null,
|
| 85 |
+
"temperature": 1.0,
|
| 86 |
+
"tf_legacy_loss": false,
|
| 87 |
+
"tie_encoder_decoder": false,
|
| 88 |
+
"tie_word_embeddings": false,
|
| 89 |
+
"tokenizer_class": null,
|
| 90 |
+
"top_k": 50,
|
| 91 |
+
"top_p": 1.0,
|
| 92 |
+
"torch_dtype": "float32",
|
| 93 |
+
"torchscript": false,
|
| 94 |
+
"typical_p": 1.0,
|
| 95 |
+
"use_bfloat16": false,
|
| 96 |
+
"use_cache": true,
|
| 97 |
+
"vocab_size": 32000
|
| 98 |
+
},
|
| 99 |
+
"torch_dtype": "float16",
|
| 100 |
+
"transformers_version": "4.42.4"
|
| 101 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.7.0",
|
| 4 |
+
"transformers": "4.37.2",
|
| 5 |
+
"pytorch": "2.2.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null
|
| 9 |
+
}
|
configuration_nvembed.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Literal
|
| 3 |
+
from transformers import AutoConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 6 |
+
from transformers.models.mistral import MistralConfig
|
| 7 |
+
|
| 8 |
+
NVEMBED_TYPE = "nvembed"
|
| 9 |
+
LATENT_ATTENTION_TYPE = "latent_attention"
|
| 10 |
+
BIDIR_MISTRAL_TYPE = "bidir_mistral"
|
| 11 |
+
|
| 12 |
+
class NVEmbedConfig(PretrainedConfig):
|
| 13 |
+
model_type = "nvembed"
|
| 14 |
+
is_composition = False
|
| 15 |
+
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
latent_attention_config=None,
|
| 19 |
+
text_config=None,
|
| 20 |
+
padding_side: Literal["right", "left"]="right",
|
| 21 |
+
add_pad_token: bool=True,
|
| 22 |
+
is_mask_instruction: bool = True,
|
| 23 |
+
add_eos: bool=True,
|
| 24 |
+
mask_type: str="b",
|
| 25 |
+
**kwargs,
|
| 26 |
+
):
|
| 27 |
+
if isinstance(latent_attention_config, dict):
|
| 28 |
+
latent_attention_config["model_type"] = (
|
| 29 |
+
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
|
| 30 |
+
)
|
| 31 |
+
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
|
| 32 |
+
elif latent_attention_config is None:
|
| 33 |
+
latent_attention_config = CONFIG_MAPPING[LATENT_ATTENTION_TYPE]()
|
| 34 |
+
|
| 35 |
+
self.latent_attention_config = latent_attention_config
|
| 36 |
+
|
| 37 |
+
if isinstance(text_config, dict):
|
| 38 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
| 39 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 40 |
+
elif text_config is None:
|
| 41 |
+
text_config = None
|
| 42 |
+
|
| 43 |
+
self.text_config = text_config
|
| 44 |
+
self.padding_side = padding_side
|
| 45 |
+
self.is_mask_instruction = is_mask_instruction
|
| 46 |
+
self.add_pad_token = add_pad_token
|
| 47 |
+
self.add_eos = add_eos
|
| 48 |
+
self.mask_type = mask_type
|
| 49 |
+
if "hidden_size" in kwargs:
|
| 50 |
+
self.hidden_size = kwargs["hidden_size"]
|
| 51 |
+
else:
|
| 52 |
+
self.hidden_size = 4096
|
| 53 |
+
|
| 54 |
+
super().__init__(**kwargs)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class LatentAttentionConfig(PretrainedConfig):
|
| 58 |
+
model_type = LATENT_ATTENTION_TYPE
|
| 59 |
+
is_composition = False
|
| 60 |
+
_name_or_path = "latent_attention"
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
num_latents_value: int=512,
|
| 65 |
+
num_cross_heads: int=8,
|
| 66 |
+
output_normalize: bool=True,
|
| 67 |
+
hidden_dim: int=4096,
|
| 68 |
+
latent_dim: int=4096,
|
| 69 |
+
cross_dim_head: int=4096,
|
| 70 |
+
**kwargs,
|
| 71 |
+
):
|
| 72 |
+
self.num_latents_value = num_latents_value
|
| 73 |
+
self.num_cross_heads = num_cross_heads
|
| 74 |
+
self.output_normalize = output_normalize
|
| 75 |
+
self.hidden_dim = hidden_dim
|
| 76 |
+
self.latent_dim = latent_dim
|
| 77 |
+
self.cross_dim_head = cross_dim_head
|
| 78 |
+
|
| 79 |
+
super().__init__(**kwargs)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class BidirectionalMistralConfig(MistralConfig):
|
| 83 |
+
model_type = BIDIR_MISTRAL_TYPE
|
| 84 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 85 |
+
|
| 86 |
+
AutoConfig.register(NVEMBED_TYPE, NVEmbedConfig)
|
| 87 |
+
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
|
| 88 |
+
AutoConfig.register(BIDIR_MISTRAL_TYPE, BidirectionalMistralConfig)
|
| 89 |
+
|
| 90 |
+
NVEmbedConfig.register_for_auto_class()
|
| 91 |
+
LatentAttentionConfig.register_for_auto_class()
|
| 92 |
+
BidirectionalMistralConfig.register_for_auto_class()
|
instructions.json
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ClimateFEVER":
|
| 3 |
+
{
|
| 4 |
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim",
|
| 5 |
+
"corpus": ""
|
| 6 |
+
},
|
| 7 |
+
"HotpotQA":
|
| 8 |
+
{
|
| 9 |
+
"query": "Given a multi-hop question, retrieve documents that can help answer the question",
|
| 10 |
+
"corpus": ""
|
| 11 |
+
},
|
| 12 |
+
"FEVER":
|
| 13 |
+
{
|
| 14 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
| 15 |
+
"corpus": ""
|
| 16 |
+
},
|
| 17 |
+
"MSMARCO":
|
| 18 |
+
{
|
| 19 |
+
"query": "Given a web search query, retrieve relevant passages that answer the query",
|
| 20 |
+
"corpus": ""
|
| 21 |
+
},
|
| 22 |
+
"DBPedia":
|
| 23 |
+
{
|
| 24 |
+
"query": "Given a query, retrieve relevant entity descriptions from DBPedia",
|
| 25 |
+
"corpus": ""
|
| 26 |
+
},
|
| 27 |
+
"NQ":
|
| 28 |
+
{
|
| 29 |
+
"query": "Given a question, retrieve passages that answer the question",
|
| 30 |
+
"corpus": ""
|
| 31 |
+
},
|
| 32 |
+
"QuoraRetrieval":
|
| 33 |
+
{
|
| 34 |
+
"query": "Given a question, retrieve questions that are semantically equivalent to the given question",
|
| 35 |
+
"corpus": "Given a question, retrieve questions that are semantically equivalent to the given question"
|
| 36 |
+
},
|
| 37 |
+
"SCIDOCS":
|
| 38 |
+
{
|
| 39 |
+
"query": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
|
| 40 |
+
"corpus": ""
|
| 41 |
+
},
|
| 42 |
+
"TRECCOVID":
|
| 43 |
+
{
|
| 44 |
+
"query": "Given a query on COVID-19, retrieve documents that answer the query",
|
| 45 |
+
"corpus": ""
|
| 46 |
+
},
|
| 47 |
+
"Touche2020":
|
| 48 |
+
{
|
| 49 |
+
"query": "Given a question, retrieve passages that answer the question",
|
| 50 |
+
"corpus": ""
|
| 51 |
+
},
|
| 52 |
+
"SciFact":
|
| 53 |
+
{
|
| 54 |
+
"query": "Given a scientific claim, retrieve documents that support or refute the claim",
|
| 55 |
+
"corpus": ""
|
| 56 |
+
},
|
| 57 |
+
"NFCorpus":
|
| 58 |
+
{
|
| 59 |
+
"query": "Given a question, retrieve relevant documents that answer the question",
|
| 60 |
+
"corpus": ""
|
| 61 |
+
},
|
| 62 |
+
"ArguAna":
|
| 63 |
+
{
|
| 64 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
| 65 |
+
"corpus": ""
|
| 66 |
+
},
|
| 67 |
+
"FiQA2018":
|
| 68 |
+
{
|
| 69 |
+
"query": "Given a financial question, retrieve relevant passages that answer the query",
|
| 70 |
+
"corpus": ""
|
| 71 |
+
},
|
| 72 |
+
"STS":
|
| 73 |
+
{
|
| 74 |
+
"text": "Retrieve semantically similar text"
|
| 75 |
+
},
|
| 76 |
+
"SUMM":
|
| 77 |
+
{
|
| 78 |
+
"text": "Given a news summary, retrieve other semantically similar summaries"
|
| 79 |
+
}
|
| 80 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ce5651268058d961eaeabd4f65a5cb5d003ac7e0e34b7095658b5d5a4802f6a
|
| 3 |
+
size 4997761248
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbd7e85b57afbc74fab67e50a572590ce57dde8b5fa76fe7527c42189074d57d
|
| 3 |
+
size 4915917048
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87c90f033107075c9531ed8163d4b087ce77e63596c8510821da15a4d892a85c
|
| 3 |
+
size 4999820296
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44ff251c6b33ed89101915eb82a92575fd7d7daf9db953205f3bb4b982c4c3f5
|
| 3 |
+
size 788571960
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15702032384
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"embedding_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 7 |
+
"embedding_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"embedding_model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"embedding_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"embedding_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"embedding_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"embedding_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"embedding_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"embedding_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"embedding_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"embedding_model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"embedding_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"embedding_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"embedding_model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"embedding_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"embedding_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"embedding_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"embedding_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"embedding_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"embedding_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 26 |
+
"embedding_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"embedding_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"embedding_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"embedding_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"embedding_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"embedding_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"embedding_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"embedding_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"embedding_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"embedding_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"embedding_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"embedding_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"embedding_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"embedding_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"embedding_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"embedding_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"embedding_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"embedding_model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"embedding_model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"embedding_model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"embedding_model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"embedding_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"embedding_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"embedding_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"embedding_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"embedding_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"embedding_model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"embedding_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"embedding_model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"embedding_model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"embedding_model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"embedding_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"embedding_model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"embedding_model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"embedding_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"embedding_model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"embedding_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"embedding_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"embedding_model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"embedding_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"embedding_model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"embedding_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"embedding_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"embedding_model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"embedding_model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"embedding_model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"embedding_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"embedding_model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"embedding_model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"embedding_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"embedding_model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"embedding_model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"embedding_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"embedding_model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"embedding_model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"embedding_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"embedding_model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"embedding_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"embedding_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"embedding_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"embedding_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"embedding_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"embedding_model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"embedding_model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"embedding_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"embedding_model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"embedding_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"embedding_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"embedding_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"embedding_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"embedding_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"embedding_model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 98 |
+
"embedding_model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 99 |
+
"embedding_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"embedding_model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"embedding_model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 102 |
+
"embedding_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"embedding_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"embedding_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"embedding_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"embedding_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"embedding_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"embedding_model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"embedding_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 110 |
+
"embedding_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"embedding_model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"embedding_model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"embedding_model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 114 |
+
"embedding_model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 115 |
+
"embedding_model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 116 |
+
"embedding_model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 117 |
+
"embedding_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"embedding_model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"embedding_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"embedding_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"embedding_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"embedding_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"embedding_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"embedding_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 125 |
+
"embedding_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"embedding_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"embedding_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"embedding_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"embedding_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"embedding_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"embedding_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"embedding_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"embedding_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"embedding_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"embedding_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"embedding_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"embedding_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"embedding_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"embedding_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"embedding_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"embedding_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"embedding_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"embedding_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"embedding_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"embedding_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"embedding_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"embedding_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"embedding_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"embedding_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"embedding_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"embedding_model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"embedding_model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"embedding_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"embedding_model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"embedding_model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"embedding_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"embedding_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"embedding_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"embedding_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"embedding_model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"embedding_model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"embedding_model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"embedding_model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"embedding_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"embedding_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"embedding_model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"embedding_model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"embedding_model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"embedding_model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"embedding_model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"embedding_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"embedding_model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"embedding_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"embedding_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"embedding_model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"embedding_model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"embedding_model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"embedding_model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"embedding_model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"embedding_model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"embedding_model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"embedding_model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"embedding_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"embedding_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"embedding_model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"embedding_model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"embedding_model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"embedding_model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"embedding_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"embedding_model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"embedding_model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"embedding_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"embedding_model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"embedding_model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"embedding_model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"embedding_model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"embedding_model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"embedding_model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"embedding_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"embedding_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"embedding_model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"embedding_model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"embedding_model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"embedding_model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"embedding_model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"embedding_model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"embedding_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"embedding_model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"embedding_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"embedding_model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"embedding_model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"embedding_model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"embedding_model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"embedding_model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 215 |
+
"embedding_model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"embedding_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"embedding_model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"embedding_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"embedding_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"embedding_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"embedding_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"embedding_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"embedding_model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 224 |
+
"embedding_model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 225 |
+
"embedding_model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 226 |
+
"embedding_model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 227 |
+
"embedding_model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 228 |
+
"embedding_model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"embedding_model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"embedding_model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"embedding_model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"embedding_model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 233 |
+
"embedding_model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"embedding_model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"embedding_model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"embedding_model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"embedding_model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"embedding_model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 239 |
+
"embedding_model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"embedding_model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"embedding_model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 242 |
+
"embedding_model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 243 |
+
"embedding_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 244 |
+
"embedding_model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"embedding_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"embedding_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"embedding_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"embedding_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"embedding_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"embedding_model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"embedding_model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"embedding_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"embedding_model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"embedding_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"embedding_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"embedding_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"embedding_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"embedding_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"embedding_model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"embedding_model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"embedding_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"embedding_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"embedding_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"embedding_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"embedding_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"embedding_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"embedding_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"embedding_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 269 |
+
"embedding_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 270 |
+
"embedding_model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"embedding_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 272 |
+
"embedding_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 273 |
+
"embedding_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"embedding_model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"embedding_model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"embedding_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"embedding_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 278 |
+
"embedding_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 279 |
+
"embedding_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 280 |
+
"embedding_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 281 |
+
"embedding_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 282 |
+
"embedding_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 283 |
+
"embedding_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 284 |
+
"embedding_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"embedding_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"embedding_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 287 |
+
"embedding_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"embedding_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"embedding_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"embedding_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"embedding_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"embedding_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"embedding_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 294 |
+
"embedding_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 295 |
+
"embedding_model.norm.weight": "model-00004-of-00004.safetensors",
|
| 296 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_kv.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_out.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_q.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"latent_attention_model.cross_attend_blocks.0.norm.bias": "model-00001-of-00004.safetensors",
|
| 300 |
+
"latent_attention_model.cross_attend_blocks.0.norm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.bias": "model-00001-of-00004.safetensors",
|
| 304 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.weight": "model-00001-of-00004.safetensors",
|
| 305 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.bias": "model-00001-of-00004.safetensors",
|
| 306 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.weight": "model-00001-of-00004.safetensors",
|
| 307 |
+
"latent_attention_model.cross_attend_blocks.1.norm.bias": "model-00001-of-00004.safetensors",
|
| 308 |
+
"latent_attention_model.cross_attend_blocks.1.norm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"latent_attention_model.latents": "model-00001-of-00004.safetensors"
|
| 310 |
+
}
|
| 311 |
+
}
|
modeling_nvembed.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import numpy as np
|
| 6 |
+
from functools import partial
|
| 7 |
+
from contextlib import nullcontext
|
| 8 |
+
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
| 9 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
+
from transformers.models.auto import AutoTokenizer
|
| 11 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 12 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 13 |
+
from transformers import MistralModel, MistralConfig
|
| 14 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 15 |
+
from transformers.utils import (
|
| 16 |
+
add_start_docstrings_to_model_forward,
|
| 17 |
+
logging,
|
| 18 |
+
)
|
| 19 |
+
from einops import rearrange, repeat
|
| 20 |
+
from tqdm.auto import tqdm
|
| 21 |
+
from datasets import Dataset
|
| 22 |
+
from torch.utils.data import DataLoader
|
| 23 |
+
from .configuration_nvembed import NVEmbedConfig, LatentAttentionConfig, BidirectionalMistralConfig
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
class NVEmbedFeatures(TypedDict):
|
| 28 |
+
input_dict: torch.Tensor
|
| 29 |
+
attention_mask: torch.Tensor
|
| 30 |
+
pool_mask: torch.Tensor
|
| 31 |
+
|
| 32 |
+
class BidirectionalMistralModel(MistralModel):
|
| 33 |
+
config_class = BidirectionalMistralConfig
|
| 34 |
+
|
| 35 |
+
def __init__(self, config: MistralConfig):
|
| 36 |
+
super().__init__(config)
|
| 37 |
+
for layer in self.layers:
|
| 38 |
+
layer.self_attn.is_causal = False
|
| 39 |
+
self._attn_implementation = "eager"
|
| 40 |
+
|
| 41 |
+
def forward(
|
| 42 |
+
self,
|
| 43 |
+
input_ids: torch.LongTensor = None,
|
| 44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 45 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 46 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 47 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 48 |
+
use_cache: Optional[bool] = None,
|
| 49 |
+
output_attentions: Optional[bool] = None,
|
| 50 |
+
output_hidden_states: Optional[bool] = None,
|
| 51 |
+
return_dict: Optional[bool] = None,
|
| 52 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 53 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 54 |
+
output_hidden_states = (
|
| 55 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 56 |
+
)
|
| 57 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 58 |
+
|
| 59 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 60 |
+
|
| 61 |
+
# retrieve input_ids and inputs_embeds
|
| 62 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 63 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 64 |
+
elif input_ids is not None:
|
| 65 |
+
batch_size, seq_length = input_ids.shape
|
| 66 |
+
elif inputs_embeds is not None:
|
| 67 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 68 |
+
else:
|
| 69 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 70 |
+
|
| 71 |
+
if self.gradient_checkpointing and self.training:
|
| 72 |
+
if use_cache:
|
| 73 |
+
logger.warning_once(
|
| 74 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 75 |
+
)
|
| 76 |
+
use_cache = False
|
| 77 |
+
|
| 78 |
+
past_key_values_length = 0
|
| 79 |
+
|
| 80 |
+
if use_cache:
|
| 81 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 82 |
+
if use_legacy_cache:
|
| 83 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 84 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 85 |
+
|
| 86 |
+
if position_ids is None:
|
| 87 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 88 |
+
position_ids = torch.arange(
|
| 89 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 90 |
+
)
|
| 91 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 92 |
+
else:
|
| 93 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 94 |
+
|
| 95 |
+
if inputs_embeds is None:
|
| 96 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 97 |
+
|
| 98 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
| 99 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 100 |
+
if is_padding_right:
|
| 101 |
+
raise ValueError(
|
| 102 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 103 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
| 104 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if self._attn_implementation == "flash_attention_2":
|
| 108 |
+
# 2d mask is passed through the layers
|
| 109 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 110 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
| 111 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 112 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 113 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 114 |
+
attention_mask, inputs_embeds.dtype
|
| 115 |
+
)
|
| 116 |
+
else:
|
| 117 |
+
# 4d mask is passed through the layers
|
| 118 |
+
attention_mask = _prepare_4d_attention_mask(
|
| 119 |
+
attention_mask, inputs_embeds.dtype,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
hidden_states = inputs_embeds
|
| 123 |
+
|
| 124 |
+
# decoder layers
|
| 125 |
+
all_hidden_states = () if output_hidden_states else None
|
| 126 |
+
all_self_attns = () if output_attentions else None
|
| 127 |
+
next_decoder_cache = None
|
| 128 |
+
|
| 129 |
+
for decoder_layer in self.layers:
|
| 130 |
+
if output_hidden_states:
|
| 131 |
+
all_hidden_states += (hidden_states,)
|
| 132 |
+
|
| 133 |
+
if self.gradient_checkpointing and self.training:
|
| 134 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 135 |
+
decoder_layer.__call__,
|
| 136 |
+
hidden_states,
|
| 137 |
+
attention_mask,
|
| 138 |
+
position_ids,
|
| 139 |
+
past_key_values,
|
| 140 |
+
output_attentions,
|
| 141 |
+
use_cache,
|
| 142 |
+
)
|
| 143 |
+
else:
|
| 144 |
+
layer_outputs = decoder_layer(
|
| 145 |
+
hidden_states,
|
| 146 |
+
attention_mask=attention_mask,
|
| 147 |
+
position_ids=position_ids,
|
| 148 |
+
past_key_value=past_key_values,
|
| 149 |
+
output_attentions=output_attentions,
|
| 150 |
+
use_cache=use_cache,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
hidden_states = layer_outputs[0]
|
| 154 |
+
|
| 155 |
+
if use_cache:
|
| 156 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 157 |
+
|
| 158 |
+
if output_attentions:
|
| 159 |
+
all_self_attns += (layer_outputs[1],)
|
| 160 |
+
|
| 161 |
+
hidden_states = self.norm(hidden_states)
|
| 162 |
+
|
| 163 |
+
# add hidden states from the last decoder layer
|
| 164 |
+
if output_hidden_states:
|
| 165 |
+
all_hidden_states += (hidden_states,)
|
| 166 |
+
|
| 167 |
+
next_cache = None
|
| 168 |
+
if use_cache:
|
| 169 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 170 |
+
|
| 171 |
+
if not return_dict:
|
| 172 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 173 |
+
return BaseModelOutputWithPast(
|
| 174 |
+
last_hidden_state=hidden_states,
|
| 175 |
+
past_key_values=next_cache,
|
| 176 |
+
hidden_states=all_hidden_states,
|
| 177 |
+
attentions=all_self_attns,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
def _move_to_device(maybe_tensor, device: torch.device):
|
| 181 |
+
if torch.is_tensor(maybe_tensor):
|
| 182 |
+
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
|
| 183 |
+
elif isinstance(maybe_tensor, dict):
|
| 184 |
+
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
|
| 185 |
+
elif isinstance(maybe_tensor, list):
|
| 186 |
+
return [_move_to_device(x, device) for x in maybe_tensor]
|
| 187 |
+
elif isinstance(maybe_tensor, tuple):
|
| 188 |
+
return tuple([_move_to_device(x, device) for x in maybe_tensor])
|
| 189 |
+
elif isinstance(maybe_tensor, Mapping):
|
| 190 |
+
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
|
| 191 |
+
else:
|
| 192 |
+
return maybe_tensor
|
| 193 |
+
|
| 194 |
+
def move_to_device(sample, device: torch.device):
|
| 195 |
+
if device.type == "cpu":
|
| 196 |
+
return sample
|
| 197 |
+
|
| 198 |
+
if len(sample) == 0:
|
| 199 |
+
return {}
|
| 200 |
+
return _move_to_device(sample, device)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def input_transform_func(
|
| 204 |
+
tokenizer: PreTrainedTokenizerFast,
|
| 205 |
+
examples: Dict[str, List],
|
| 206 |
+
always_add_eos: bool,
|
| 207 |
+
max_length: int,
|
| 208 |
+
instruction: str,
|
| 209 |
+
) -> BatchEncoding:
|
| 210 |
+
if always_add_eos:
|
| 211 |
+
examples['input_texts'] = [instruction + input_example + tokenizer.eos_token for input_example in examples['input_texts']]
|
| 212 |
+
batch_dict = tokenizer(
|
| 213 |
+
examples['input_texts'],
|
| 214 |
+
max_length=max_length,
|
| 215 |
+
padding=True,
|
| 216 |
+
return_token_type_ids=False,
|
| 217 |
+
return_tensors="pt",
|
| 218 |
+
truncation=True)
|
| 219 |
+
return batch_dict
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class PreNorm(torch.nn.Module):
|
| 223 |
+
def __init__(self, dim, fn, context_dim = None):
|
| 224 |
+
super().__init__()
|
| 225 |
+
self.fn = fn
|
| 226 |
+
self.norm = torch.nn.LayerNorm(dim)
|
| 227 |
+
self.norm_context = torch.nn.LayerNorm(context_dim) if exists(context_dim) else None
|
| 228 |
+
|
| 229 |
+
def forward(self, x, **kwargs):
|
| 230 |
+
x = self.norm(x)
|
| 231 |
+
if exists(self.norm_context):
|
| 232 |
+
context = kwargs['context']
|
| 233 |
+
normed_context = self.norm_context(context)
|
| 234 |
+
kwargs.update(context = normed_context)
|
| 235 |
+
return self.fn(x, **kwargs)
|
| 236 |
+
|
| 237 |
+
class GEGLU(torch.nn.Module):
|
| 238 |
+
def forward(self, x):
|
| 239 |
+
x, gates = x.chunk(2, dim = -1)
|
| 240 |
+
return x * torch.nn.functional.gelu(gates)
|
| 241 |
+
|
| 242 |
+
class FeedForward(torch.nn.Module):
|
| 243 |
+
def __init__(self, dim, mult = 4):
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.net = torch.nn.Sequential(torch.nn.Linear(dim, dim * mult * 2),
|
| 246 |
+
GEGLU(),
|
| 247 |
+
torch.nn.Linear(dim * mult, dim))
|
| 248 |
+
|
| 249 |
+
def forward(self, x):
|
| 250 |
+
return self.net(x)
|
| 251 |
+
|
| 252 |
+
def exists(val):
|
| 253 |
+
return val is not None
|
| 254 |
+
|
| 255 |
+
def default(val, d):
|
| 256 |
+
return val if exists(val) else d
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class Attention(torch.nn.Module):
|
| 260 |
+
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
|
| 261 |
+
super().__init__()
|
| 262 |
+
inner_dim = dim_head * heads
|
| 263 |
+
context_dim = default(context_dim, query_dim)
|
| 264 |
+
self.scale = dim_head ** -0.5
|
| 265 |
+
self.heads = heads
|
| 266 |
+
|
| 267 |
+
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
|
| 268 |
+
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
|
| 269 |
+
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
|
| 270 |
+
|
| 271 |
+
def forward(self, x, context = None, mask = None):
|
| 272 |
+
h = self.heads
|
| 273 |
+
q = self.to_q(x)
|
| 274 |
+
context = default(context, x)
|
| 275 |
+
k, v = self.to_kv(context).chunk(2, dim = -1)
|
| 276 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
|
| 277 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True):
|
| 278 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
| 279 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
| 280 |
+
return self.to_out(out)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class LatentAttentionModel(PreTrainedModel):
|
| 284 |
+
config_class = LatentAttentionConfig
|
| 285 |
+
|
| 286 |
+
def __init__(self, config: LatentAttentionConfig):
|
| 287 |
+
super().__init__(config)
|
| 288 |
+
## cross-attention block
|
| 289 |
+
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
|
| 290 |
+
dim = config.hidden_dim
|
| 291 |
+
# init latent_attention and latents
|
| 292 |
+
self.cross_attend_blocks = torch.nn.ModuleList([
|
| 293 |
+
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
|
| 294 |
+
context_dim = dim),
|
| 295 |
+
PreNorm(latent_dim, FeedForward(latent_dim)),
|
| 296 |
+
])
|
| 297 |
+
self.output_normalize = config.output_normalize
|
| 298 |
+
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
|
| 299 |
+
|
| 300 |
+
@property
|
| 301 |
+
def all_tied_weights_keys(self):
|
| 302 |
+
"""Compatibility property for transformers >= 5.0.0.
|
| 303 |
+
|
| 304 |
+
The transformers library changed from using _tied_weights_keys (a class attribute)
|
| 305 |
+
to all_tied_weights_keys (a property that returns a dict). This property provides
|
| 306 |
+
backward compatibility by converting the old format to the new format.
|
| 307 |
+
|
| 308 |
+
Returns:
|
| 309 |
+
dict: A dictionary mapping tied weight keys to themselves.
|
| 310 |
+
"""
|
| 311 |
+
if hasattr(self, '_tied_weights_keys') and self._tied_weights_keys:
|
| 312 |
+
return {key: key for key in self._tied_weights_keys}
|
| 313 |
+
return {}
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def forward(self, hiddens, attention_mask: torch.Tensor=None):
|
| 317 |
+
## cross-attention block
|
| 318 |
+
cross_attn, cross_ff = self.cross_attend_blocks
|
| 319 |
+
b, *_, device = *hiddens.shape, hiddens.device
|
| 320 |
+
x = repeat(self.latents, 'n d -> b n d', b = b)
|
| 321 |
+
hiddens = cross_attn(hiddens, context = x, mask = None) + hiddens
|
| 322 |
+
hiddens = cross_ff(hiddens) + hiddens
|
| 323 |
+
if attention_mask !=None:
|
| 324 |
+
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
|
| 325 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
| 326 |
+
hiddens = s / d
|
| 327 |
+
if self.output_normalize:
|
| 328 |
+
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
|
| 329 |
+
return hiddens
|
| 330 |
+
|
| 331 |
+
class NVEmbedModel(PreTrainedModel):
|
| 332 |
+
config_class = NVEmbedConfig
|
| 333 |
+
_no_split_modules = ["MistralDecoderLayer", "LatentAttentionModel"]
|
| 334 |
+
|
| 335 |
+
def __init__(self, config: NVEmbedConfig):
|
| 336 |
+
super().__init__(config)
|
| 337 |
+
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config)
|
| 338 |
+
self.embedding_model = AutoModel.from_config(
|
| 339 |
+
config.text_config,
|
| 340 |
+
) if config.text_config is not None else None
|
| 341 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
|
| 342 |
+
self.padding_side = config.padding_side
|
| 343 |
+
self.is_mask_instruction = config.is_mask_instruction
|
| 344 |
+
self.add_eos = config.add_eos
|
| 345 |
+
self.mask_type = config.mask_type
|
| 346 |
+
if config.add_pad_token and self.tokenizer is not None:
|
| 347 |
+
self.add_pad_token()
|
| 348 |
+
|
| 349 |
+
def add_pad_token(self):
|
| 350 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 351 |
+
self.tokenizer.padding_side = self.padding_side
|
| 352 |
+
|
| 353 |
+
@property
|
| 354 |
+
def all_tied_weights_keys(self):
|
| 355 |
+
"""Compatibility property for transformers >= 5.0.0.
|
| 356 |
+
|
| 357 |
+
The transformers library changed from using _tied_weights_keys (a class attribute)
|
| 358 |
+
to all_tied_weights_keys (a property that returns a dict). This property provides
|
| 359 |
+
backward compatibility by converting the old format to the new format.
|
| 360 |
+
|
| 361 |
+
Returns:
|
| 362 |
+
dict: A dictionary mapping tied weight keys to themselves.
|
| 363 |
+
"""
|
| 364 |
+
if hasattr(self, '_tied_weights_keys') and self._tied_weights_keys:
|
| 365 |
+
return {key: key for key in self._tied_weights_keys}
|
| 366 |
+
return {}
|
| 367 |
+
|
| 368 |
+
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
|
| 369 |
+
batch_dict = move_to_device(batch_dict, device)
|
| 370 |
+
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
|
| 371 |
+
if (attention_mask is not None and
|
| 372 |
+
self.padding_side == "right" and
|
| 373 |
+
self.is_mask_instruction == True and
|
| 374 |
+
instruction_lens > 0):
|
| 375 |
+
# Mask out the instruction tokens for mean-pooling
|
| 376 |
+
attention_mask[:, :instruction_lens] = 0
|
| 377 |
+
features: NVEmbedFeatures = {
|
| 378 |
+
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
|
| 379 |
+
'attention_mask': batch_dict['attention_mask'],
|
| 380 |
+
'pool_mask': attention_mask,
|
| 381 |
+
}
|
| 382 |
+
return features
|
| 383 |
+
|
| 384 |
+
@torch.no_grad()
|
| 385 |
+
def _do_encode(self,
|
| 386 |
+
prompts: List[str],
|
| 387 |
+
batch_size: int=1,
|
| 388 |
+
instruction: str="",
|
| 389 |
+
max_length: int=4096,
|
| 390 |
+
num_workers: int=32,
|
| 391 |
+
**kwargs
|
| 392 |
+
) -> Union[np.ndarray, torch.FloatTensor]:
|
| 393 |
+
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
|
| 394 |
+
dataset.set_transform(partial(input_transform_func,
|
| 395 |
+
self.tokenizer,
|
| 396 |
+
always_add_eos=True,
|
| 397 |
+
max_length=max_length,
|
| 398 |
+
instruction=instruction))
|
| 399 |
+
|
| 400 |
+
data_collator = DataCollatorWithPadding(self.tokenizer)
|
| 401 |
+
data_loader = DataLoader(
|
| 402 |
+
dataset,
|
| 403 |
+
batch_size=batch_size,
|
| 404 |
+
shuffle=False,
|
| 405 |
+
drop_last=False,
|
| 406 |
+
num_workers=num_workers,
|
| 407 |
+
collate_fn=data_collator,
|
| 408 |
+
pin_memory=True)
|
| 409 |
+
|
| 410 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
| 411 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
| 412 |
+
else:
|
| 413 |
+
instruction_lens = 0
|
| 414 |
+
|
| 415 |
+
encoded_embeds = []
|
| 416 |
+
device = next(self.embedding_model.parameters()).device
|
| 417 |
+
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
|
| 418 |
+
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
| 419 |
+
embeds=self(**features)["sentence_embeddings"].squeeze(1)
|
| 420 |
+
encoded_embeds.append(embeds)
|
| 421 |
+
encoded_embeds = torch.cat(encoded_embeds, axis=0)
|
| 422 |
+
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
|
| 423 |
+
encoded_embeds = encoded_embeds.cpu().detach().numpy()
|
| 424 |
+
return encoded_embeds
|
| 425 |
+
|
| 426 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, return_dict: bool=True):
|
| 427 |
+
autocast_ctx = torch.autocast if torch.cuda.is_available() else nullcontext
|
| 428 |
+
with autocast_ctx("cuda"):
|
| 429 |
+
## decoder only layer
|
| 430 |
+
outputs = self.embedding_model(
|
| 431 |
+
input_ids=input_ids,
|
| 432 |
+
attention_mask=attention_mask,
|
| 433 |
+
)
|
| 434 |
+
## latent attention layer
|
| 435 |
+
embeds = self.latent_attention_model(
|
| 436 |
+
outputs.last_hidden_state,
|
| 437 |
+
pool_mask,
|
| 438 |
+
)
|
| 439 |
+
if not return_dict:
|
| 440 |
+
return (embeds,)
|
| 441 |
+
return {"sentence_embeddings": embeds}
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
@torch.no_grad()
|
| 445 |
+
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
|
| 446 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
| 447 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
| 448 |
+
else:
|
| 449 |
+
instruction_lens = 0
|
| 450 |
+
|
| 451 |
+
device = next(self.embedding_model.parameters()).device
|
| 452 |
+
batch_dict = input_transform_func(self.tokenizer,
|
| 453 |
+
{"input_texts": [prompt for prompt in prompts]},
|
| 454 |
+
always_add_eos=True,
|
| 455 |
+
max_length=max_length,
|
| 456 |
+
instruction=instruction)
|
| 457 |
+
|
| 458 |
+
features: NVEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
| 459 |
+
return self(**features)["sentence_embeddings"].squeeze(1)
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
## AutoModel Register
|
| 463 |
+
AutoModel.register(NVEmbedConfig, NVEmbedModel)
|
| 464 |
+
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
|
| 465 |
+
AutoModel.register(BidirectionalMistralConfig, BidirectionalMistralModel)
|
| 466 |
+
|
| 467 |
+
## Register for auto class
|
| 468 |
+
NVEmbedModel.register_for_auto_class("AutoModel")
|
| 469 |
+
LatentAttentionModel.register_for_auto_class("AutoModel")
|
| 470 |
+
BidirectionalMistralModel.register_for_auto_class("AutoModel")
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 32768,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"additional_special_tokens": [],
|
| 32 |
+
"bos_token": "<s>",
|
| 33 |
+
"clean_up_tokenization_spaces": false,
|
| 34 |
+
"eos_token": "</s>",
|
| 35 |
+
"legacy": true,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": "</s>",
|
| 38 |
+
"sp_model_kwargs": {},
|
| 39 |
+
"spaces_between_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|