Add library name, pipeline tag (#1)
Browse files- Add library name, pipeline tag (1d03df18eb68b2ed7474009cf20141eaafbabc50)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
|
@@ -1,94 +1,96 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-4.0
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
- **[
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
import
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
#
|
| 61 |
-
MODEL.
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
}
|
|
|
|
|
|
|
| 94 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
library_name: audiocraft
|
| 4 |
+
pipeline_tag: video-to-audio
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# VidMuse
|
| 8 |
+
|
| 9 |
+
## VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
|
| 10 |
+
|
| 11 |
+
[TL;DR]: VidMuse is a framework for generating high-fidelity music aligned with video content, utilizing Long-Short-Term modeling, and has been accepted to CVPR 2025.
|
| 12 |
+
|
| 13 |
+
### Links
|
| 14 |
+
- **[Paper](https://arxiv.org/pdf/2406.04321)**: Explore the research behind VidMuse.
|
| 15 |
+
- **[Project](https://vidmuse.github.io/)**: Visit the official project page for more information and updates.
|
| 16 |
+
- **[Dataset](https://huggingface.co/datasets/HKUSTAudio/VidMuse-Dataset)**: Download the dataset used in the paper.
|
| 17 |
+
|
| 18 |
+
## Clone the repository
|
| 19 |
+
```bash
|
| 20 |
+
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/HKUSTAudio/VidMuse
|
| 21 |
+
cd VidMuse
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
## Usage
|
| 25 |
+
|
| 26 |
+
1. First install the [`VidMuse` library](https://github.com/ZeyueT/VidMuse)
|
| 27 |
+
```
|
| 28 |
+
conda create -n VidMuse python=3.9
|
| 29 |
+
conda activate VidMuse
|
| 30 |
+
pip install git+https://github.com/ZeyueT/VidMuse.git
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
2. Install ffmpeg:
|
| 34 |
+
Install ffmpeg:
|
| 35 |
+
```bash
|
| 36 |
+
sudo apt-get install ffmpeg
|
| 37 |
+
# Or if you are using Anaconda or Miniconda
|
| 38 |
+
conda install "ffmpeg<5" -c conda-forge
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
3. Run the following Python code:
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
```py
|
| 46 |
+
from video_processor import VideoProcessor, merge_video_audio
|
| 47 |
+
from audiocraft.models import VidMuse
|
| 48 |
+
import scipy
|
| 49 |
+
|
| 50 |
+
# Path to the video
|
| 51 |
+
video_path = 'sample.mp4'
|
| 52 |
+
# Initialize the video processor
|
| 53 |
+
processor = VideoProcessor()
|
| 54 |
+
# Process the video to obtain tensors and duration
|
| 55 |
+
local_video_tensor, global_video_tensor, duration = processor.process(video_path)
|
| 56 |
+
|
| 57 |
+
progress = True
|
| 58 |
+
USE_DIFFUSION = False
|
| 59 |
+
|
| 60 |
+
# Load the pre-trained VidMuse model
|
| 61 |
+
MODEL = VidMuse.get_pretrained('HKUSTAudio/VidMuse')
|
| 62 |
+
# Set generation parameters for the model based on video duration
|
| 63 |
+
MODEL.set_generation_params(duration=duration)
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# Generate outputs using the model
|
| 67 |
+
outputs = MODEL.generate([local_video_tensor, global_video_tensor], progress=progress, return_tokens=USE_DIFFUSION)
|
| 68 |
+
except RuntimeError as e:
|
| 69 |
+
print(e)
|
| 70 |
+
|
| 71 |
+
# Detach outputs from the computation graph and convert to CPU float tensor
|
| 72 |
+
outputs = outputs.detach().cpu().float()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
sampling_rate = 32000
|
| 76 |
+
output_wav_path = "vidmuse_sample.wav"
|
| 77 |
+
# Write the output audio data to a WAV file
|
| 78 |
+
scipy.io.wavfile.write(output_wav_path, rate=sampling_rate, data=outputs[0, 0].numpy())
|
| 79 |
+
|
| 80 |
+
output_video_path = "vidmuse_sample.mp4"
|
| 81 |
+
# Merge the original video with the generated music
|
| 82 |
+
merge_video_audio(video_path, output_wav_path, output_video_path)
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
## Citation
|
| 87 |
+
If you find our work useful, please consider citing:
|
| 88 |
+
|
| 89 |
+
```
|
| 90 |
+
@article{tian2024vidmuse,
|
| 91 |
+
title={Vidmuse: A simple video-to-music generation framework with long-short-term modeling},
|
| 92 |
+
author={Tian, Zeyue and Liu, Zhaoyang and Yuan, Ruibin and Pan, Jiahao and Liu, Qifeng and Tan, Xu and Chen, Qifeng and Xue, Wei and Guo, Yike},
|
| 93 |
+
journal={arXiv preprint arXiv:2406.04321},
|
| 94 |
+
year={2024}
|
| 95 |
+
}
|
| 96 |
```
|