ONNX
aluminumbox commited on
Commit
9891c79
·
verified ·
1 Parent(s): 4d2a0ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -146
README.md CHANGED
@@ -1,39 +1,66 @@
1
- [![SVG Banners](https://svg-banners.vercel.app/api?type=origin&text1=CosyVoice🤠&text2=Text-to-Speech%20💖%20Large%20Language%20Model&width=800&height=210)](https://github.com/Akshay090/svg-banners)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## 👉🏻 CosyVoice 👈🏻
4
- **CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
5
 
6
- **CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
 
 
 
 
7
 
8
  ## Highlight🔥
9
 
10
- **CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
11
- ### Multilingual
12
- - **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
13
- - **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
14
- ### Ultra-Low Latency
15
- - **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
16
- - **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
17
- ### High Accuracy
18
- - **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
19
- - **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
20
- ### Strong Stability
21
- - **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
22
- - **Cross-language Synthesis**: Marked improvements compared to version 1.0.
23
- ### Natural Experience
24
- - **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
25
- - **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
26
 
27
  ## Roadmap
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  - [x] 2024/12
30
 
31
- - [x] 25hz cosyvoice 2.0 released
32
 
33
  - [x] 2024/09
34
 
35
- - [x] 25hz cosyvoice base model
36
- - [x] 25hz cosyvoice voice conversion model
37
 
38
  - [x] 2024/08
39
 
@@ -46,65 +73,66 @@
46
  - [x] WeTextProcessing support when ttsfrd is not available
47
  - [x] Fastapi server and client
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ## Install
51
 
52
- **Clone and install**
53
 
54
  - Clone the repo
55
- ``` sh
56
- git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
57
- # If you failed to clone submodule due to network failures, please run following command until success
58
- cd CosyVoice
59
- git submodule update --init --recursive
60
- ```
61
 
62
  - Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
63
  - Create Conda env:
64
 
65
- ``` sh
66
- conda create -n cosyvoice python=3.10
67
- conda activate cosyvoice
68
- # pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
69
- conda install -y -c conda-forge pynini==2.1.5
70
- pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
71
-
72
- # If you encounter sox compatibility issues
73
- # ubuntu
74
- sudo apt-get install sox libsox-dev
75
- # centos
76
- sudo yum install sox sox-devel
77
- ```
78
 
79
- **Model download**
 
 
 
 
 
80
 
81
- We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
82
 
83
  ``` python
84
- # SDK模型下载
85
- from modelscope import snapshot_download
86
- snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
87
- snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
88
- snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
89
- snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
90
- snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
91
  snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
92
  ```
93
 
94
- ``` sh
95
- # git模型下载,请确保已安装git lfs
96
- mkdir -p pretrained_models
97
- git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
98
- git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
99
- git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
100
- git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
101
- git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
102
- git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
103
- ```
104
-
105
- Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
106
 
107
- Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
108
 
109
  ``` sh
110
  cd pretrained_models/CosyVoice-ttsfrd/
@@ -113,98 +141,30 @@ pip install ttsfrd_dependency-0.1-py3-none-any.whl
113
  pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
114
  ```
115
 
116
- **Basic Usage**
117
-
118
- We strongly recommend using `CosyVoice2-0.5B` for better performance.
119
- Follow code below for detailed usage of each model.
120
 
121
  ``` python
122
  import sys
123
  sys.path.append('third_party/Matcha-TTS')
124
- from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
125
- from cosyvoice.utils.file_utils import load_wav
126
  import torchaudio
127
- ```
128
 
129
- **CosyVoice2 Usage**
130
- ```python
131
- cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
132
-
133
- # NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
134
- # zero_shot usage
135
- prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
136
- for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
137
  torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
138
-
139
- # fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
140
- for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
141
- torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
142
-
143
- # instruct usage
144
- for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
145
- torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
146
- ```
147
-
148
- **CosyVoice Usage**
149
- ```python
150
- cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
151
- # sft usage
152
- print(cosyvoice.list_available_spks())
153
- # change stream=True for chunk stream inference
154
- for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
155
- torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
156
-
157
- cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
158
- # zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
159
- prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
160
- for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
161
  torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
162
- # cross_lingual usage
163
- prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
164
- for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
165
  torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
166
  # vc usage
167
- prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
168
- source_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
169
- for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
170
  torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
171
-
172
- cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
173
- # instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
174
- for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
175
- torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
176
- ```
177
-
178
- **Start web demo**
179
-
180
- You can use our web demo page to get familiar with CosyVoice quickly.
181
-
182
- Please see the demo website for details.
183
-
184
- ``` python
185
- # change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
186
- python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
187
- ```
188
-
189
- **Advanced Usage**
190
-
191
- For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
192
-
193
- **Build for deployment**
194
-
195
- Optionally, if you want service deployment,
196
- you can run following steps.
197
-
198
- ``` sh
199
- cd runtime/python
200
- docker build -t cosyvoice:v1.0 .
201
- # change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
202
- # for grpc usage
203
- docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
204
- cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
205
- # for fastapi usage
206
- docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
207
- cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
208
  ```
209
 
210
  ## Discussion & Communication
@@ -223,5 +183,39 @@ You can also scan the QR code to join our official Dingding chat group.
223
  4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
224
  5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  ## Disclaimer
227
- The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ - fr
7
+ - es
8
+ - ja
9
+ - ko
10
+ - it
11
+ - ru
12
+ - de
13
+ ---
14
+
15
+ ![SVG Banners](https://svg-banners.vercel.app/api?type=origin&text1=CosyVoice🤠&text2=Text-to-Speech%20💖%20Large%20Language%20Model&width=800&height=210)
16
 
17
  ## 👉🏻 CosyVoice 👈🏻
 
18
 
19
+ **Fun-CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [Modelscope](https://www.modelscope.cn/models/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [Huggingface](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
20
+
21
+ **CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B)
22
+
23
+ **CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/models/iic/CosyVoice-300M); [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice-300M)
24
 
25
  ## Highlight🔥
26
 
27
+ **Fun-CosyVoice 3.0** is an advanced text-to-speech (TTS) system based on large language models (LLM), surpassing its predecessor (CosyVoice 2.0) in content consistency, speaker similarity, and prosody naturalness. It is designed for zero-shot multilingual speech synthesis in the wild.
28
+ ### Key Features
29
+ - **Language Coverage**: Covers 9 common languages (Chinese, English, Japanese, Korean, German, Spanish, French, Italian, Russian), 18+ Chinese dialects/accents (Guangdong, Minnan, Sichuan, Dongbei, Shan3xi, Shan1xi, Shanghai, Tianjin, Shandong, Ningxia, Gansu, etc.) and meanwhile supports both multi-lingual/cross-lingual zero-shot voice cloning.
30
+ - **Content Consistency & Naturalness**: Achieves state-of-the-art performance in content consistency, speaker similarity, and prosody naturalness.
31
+ - **Pronunciation Inpainting**: Supports pronunciation inpainting of Chinese Pinyin and English CMU phonemes, providing more controllability and thus suitable for production use.
32
+ - **Text Normalization**: Supports reading of numbers, special symbols and various text formats without a traditional frontend module.
33
+ - **Bi-Streaming**: Support both text-in streaming and audio-out streaming, and achieves latency as low as 150ms while maintaining high-quality audio output.
34
+ - **Instruct Support**: Supports various instructions such as languages, dialects, emotions, speed, volume, etc.
35
+
 
 
 
 
 
 
 
36
 
37
  ## Roadmap
38
 
39
+ - [x] 2025/12
40
+
41
+ - [x] release Fun-CosyVoice3-0.5B-2512 base model, rl model and its training/inference script
42
+ - [x] release Fun-CosyVoice3-0.5B modelscope gradio space
43
+
44
+ - [x] 2025/08
45
+
46
+ - [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
47
+
48
+ - [x] 2025/07
49
+
50
+ - [x] release Fun-CosyVoice 3.0 eval set
51
+
52
+ - [x] 2025/05
53
+
54
+ - [x] add CosyVoice2-0.5B vllm support
55
+
56
  - [x] 2024/12
57
 
58
+ - [x] 25hz CosyVoice2-0.5B released
59
 
60
  - [x] 2024/09
61
 
62
+ - [x] 25hz CosyVoice-300M base model
63
+ - [x] 25hz CosyVoice-300M voice conversion function
64
 
65
  - [x] 2024/08
66
 
 
73
  - [x] WeTextProcessing support when ttsfrd is not available
74
  - [x] Fastapi server and client
75
 
76
+ ## Evaluation
77
+
78
+ | Model | Open-Source | Model Size | test-zh<br>CER (%) ↓ | test-zh<br>Speaker Similarity (%) ↑ | test-en<br>WER (%) ↓ | test-en<br>Speaker Similarity (%) ↑ | test-hard<br>CER (%) ↓ | test-hard<br>Speaker Similarity (%) ↑ |
79
+ | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
80
+ | Human | - | - | 1.26 | 75.5 | 2.14 | 73.4 | - | - |
81
+ | Seed-TTS | ❌ | - | 1.12 | 79.6 | 2.25 | 76.2 | 7.59 | 77.6 |
82
+ | MiniMax-Speech | ❌ | - | 0.83 | 78.3 | 1.65 | 69.2 | - | - |
83
+ | F5-TTS | ✅ | 0.3B | 1.52 | 74.1 | 2.00 | 64.7 | 8.67 | 71.3 |
84
+ | Spark TTS | ✅ | 0.5B | 1.2 | 66.0 | 1.98 | 57.3 | - | - |
85
+ | CosyVoice2 | ✅ | 0.5B | 1.45 | 75.7 | 2.57 | 65.9 | 6.83 | 72.4 |
86
+ | FireRedTTS2 | ✅ | 1.5B | 1.14 | 73.2 | 1.95 | 66.5 | - | - |
87
+ | Index-TTS2 | ✅ | 1.5B | 1.03 | 76.5 | 2.23 | 70.6 | 7.12 | 75.5 |
88
+ | VibeVoice-1.5B | ✅ | 1.5B | 1.16 | 74.4 | 3.04 | 68.9 | - | - |
89
+ | VibeVoice-Realtime | ✅ | 0.5B | - | - | 2.05 | 63.3 | - | - |
90
+ | HiggsAudio-v2 | ✅ | 3B | 1.50 | 74.0 | 2.44 | 67.7 | - | - |
91
+ | VoxCPM | ✅ | 0.5B | 0.93 | 77.2 | 1.85 | 72.9 | 8.87 | 73.0 |
92
+ | GLM-TTS | ✅ | 1.5B | 1.03 | 76.1 | - | - | - | - |
93
+ | GLM-TTS RL | ✅ | 1.5B | 0.89 | 76.4 | - | - | - | - |
94
+ | Fun-CosyVoice3-0.5B-2512 | ✅ | 0.5B | 1.21 | 78.0 | 2.24 | 71.8 | 6.71 | 75.8 |
95
+ | Fun-CosyVoice3-0.5B-2512_RL | ✅ | 0.5B | 0.81 | 77.4 | 1.68 | 69.5 | 5.44 | 75.0 |
96
+
97
 
98
  ## Install
99
 
100
+ ### Clone and install
101
 
102
  - Clone the repo
103
+ ``` sh
104
+ git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
105
+ # If you failed to clone the submodule due to network failures, please run the following command until success
106
+ cd CosyVoice
107
+ git submodule update --init --recursive
108
+ ```
109
 
110
  - Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
111
  - Create Conda env:
112
 
113
+ ``` sh
114
+ conda create -n cosyvoice -y python=3.10
115
+ conda activate cosyvoice
116
+ pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
 
 
 
 
 
 
 
 
 
117
 
118
+ # If you encounter sox compatibility issues
119
+ # ubuntu
120
+ sudo apt-get install sox libsox-dev
121
+ # centos
122
+ sudo yum install sox sox-devel
123
+ ```
124
 
125
+ ### Model download
126
 
127
  ``` python
128
+ from huggingface_hub import snapshot_download
129
+ snapshot_download('FunAudioLLM/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
 
 
 
 
 
130
  snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
131
  ```
132
 
133
+ Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
 
 
 
 
 
 
 
 
 
 
 
134
 
135
+ Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use wetext by default.
136
 
137
  ``` sh
138
  cd pretrained_models/CosyVoice-ttsfrd/
 
141
  pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
142
  ```
143
 
144
+ ### Basic Usage
 
 
 
145
 
146
  ``` python
147
  import sys
148
  sys.path.append('third_party/Matcha-TTS')
149
+ from cosyvoice.cli.cosyvoice import AutoModel
 
150
  import torchaudio
 
151
 
152
+ """ CosyVoice Usage, check https://fun-audio-llm.github.io/ for more details
153
+ """
154
+ cosyvoice = AutoModel(model_dir='pretrained_models/CosyVoice-300M')
155
+ # en zero_shot usage
156
+ for i, j in enumerate(cosyvoice.inference_zero_shot('CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities.', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
 
 
 
157
  torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
158
+ # zh zero_shot usage
159
+ for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', './asset/zero_shot_prompt.wav')):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
  torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
161
+ # cross_lingual usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
162
+ for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.',
163
+ './asset/cross_lingual_prompt.wav')):
164
  torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
165
  # vc usage
166
+ for i, j in enumerate(cosyvoice.inference_vc('./asset/cross_lingual_prompt.wav', './asset/zero_shot_prompt.wav')):
 
 
167
  torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  ```
169
 
170
  ## Discussion & Communication
 
183
  4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
184
  5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
185
 
186
+ ## Citations
187
+
188
+ ``` bibtex
189
+ @article{du2024cosyvoice,
190
+ title={Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens},
191
+ author={Du, Zhihao and Chen, Qian and Zhang, Shiliang and Hu, Kai and Lu, Heng and Yang, Yexin and Hu, Hangrui and Zheng, Siqi and Gu, Yue and Ma, Ziyang and others},
192
+ journal={arXiv preprint arXiv:2407.05407},
193
+ year={2024}
194
+ }
195
+
196
+ @article{du2024cosyvoice,
197
+ title={Cosyvoice 2: Scalable streaming speech synthesis with large language models},
198
+ author={Du, Zhihao and Wang, Yuxuan and Chen, Qian and Shi, Xian and Lv, Xiang and Zhao, Tianyu and Gao, Zhifu and Yang, Yexin and Gao, Changfeng and Wang, Hui and others},
199
+ journal={arXiv preprint arXiv:2412.10117},
200
+ year={2024}
201
+ }
202
+
203
+ @article{du2025cosyvoice,
204
+ title={CosyVoice 3: Towards In-the-wild Speech Generation via Scaling-up and Post-training},
205
+ author={Du, Zhihao and Gao, Changfeng and Wang, Yuxuan and Yu, Fan and Zhao, Tianyu and Wang, Hao and Lv, Xiang and Wang, Hui and Shi, Xian and An, Keyu and others},
206
+ journal={arXiv preprint arXiv:2505.17589},
207
+ year={2025}
208
+ }
209
+
210
+ @inproceedings{lyu2025build,
211
+ title={Build LLM-Based Zero-Shot Streaming TTS System with Cosyvoice},
212
+ author={Lyu, Xiang and Wang, Yuxuan and Zhao, Tianyu and Wang, Hao and Liu, Huadai and Du, Zhihao},
213
+ booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
214
+ pages={1--2},
215
+ year={2025},
216
+ organization={IEEE}
217
+ }
218
+ ```
219
+
220
  ## Disclaimer
221
+ The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.