Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,86 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Pipeline generated with
|
| 2 |
+
|
| 3 |
+
```python
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Pipeline
|
| 6 |
+
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, AutoTokenizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_dummy_components_sd3():
|
| 10 |
+
torch.manual_seed(0)
|
| 11 |
+
transformer = SD3Transformer2DModel(
|
| 12 |
+
sample_size=32,
|
| 13 |
+
patch_size=1,
|
| 14 |
+
in_channels=8,
|
| 15 |
+
num_layers=4,
|
| 16 |
+
attention_head_dim=8,
|
| 17 |
+
num_attention_heads=4,
|
| 18 |
+
joint_attention_dim=32,
|
| 19 |
+
caption_projection_dim=32,
|
| 20 |
+
pooled_projection_dim=64,
|
| 21 |
+
out_channels=8,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
torch.manual_seed(0)
|
| 25 |
+
clip_text_encoder_config = CLIPTextConfig(
|
| 26 |
+
bos_token_id=0,
|
| 27 |
+
eos_token_id=2,
|
| 28 |
+
hidden_size=32,
|
| 29 |
+
intermediate_size=37,
|
| 30 |
+
layer_norm_eps=1e-05,
|
| 31 |
+
num_attention_heads=4,
|
| 32 |
+
num_hidden_layers=5,
|
| 33 |
+
pad_token_id=1,
|
| 34 |
+
vocab_size=1000,
|
| 35 |
+
hidden_act="gelu",
|
| 36 |
+
projection_dim=32,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
torch.manual_seed(0)
|
| 40 |
+
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
| 41 |
+
|
| 42 |
+
torch.manual_seed(0)
|
| 43 |
+
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
| 44 |
+
|
| 45 |
+
torch.manual_seed(0)
|
| 46 |
+
text_encoder_3 = T5EncoderModel.from_pretrained("./tiny-random-t5")
|
| 47 |
+
|
| 48 |
+
tokenizer = CLIPTokenizer.from_pretrained("./tiny-random-clip")
|
| 49 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("./tiny-random-clip")
|
| 50 |
+
tokenizer_3 = AutoTokenizer.from_pretrained("./tiny-random-t5")
|
| 51 |
+
|
| 52 |
+
torch.manual_seed(0)
|
| 53 |
+
vae = AutoencoderKL(
|
| 54 |
+
sample_size=32,
|
| 55 |
+
in_channels=3,
|
| 56 |
+
out_channels=3,
|
| 57 |
+
block_out_channels=(4,),
|
| 58 |
+
layers_per_block=1,
|
| 59 |
+
latent_channels=8,
|
| 60 |
+
norm_num_groups=1,
|
| 61 |
+
use_quant_conv=False,
|
| 62 |
+
use_post_quant_conv=False,
|
| 63 |
+
shift_factor=0.0609,
|
| 64 |
+
scaling_factor=1.5035,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
scheduler = FlowMatchEulerDiscreteScheduler()
|
| 68 |
+
|
| 69 |
+
return {
|
| 70 |
+
"scheduler": scheduler,
|
| 71 |
+
"text_encoder": text_encoder,
|
| 72 |
+
"text_encoder_2": text_encoder_2,
|
| 73 |
+
"text_encoder_3": text_encoder_3,
|
| 74 |
+
"tokenizer": tokenizer,
|
| 75 |
+
"tokenizer_2": tokenizer_2,
|
| 76 |
+
"tokenizer_3": tokenizer_3,
|
| 77 |
+
"transformer": transformer,
|
| 78 |
+
"vae": vae,
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
components = get_dummy_components_sd3()
|
| 84 |
+
pipeline = StableDiffusion3Pipeline(**components)
|
| 85 |
+
pipeline.push_to_hub("DavyMorgan/tiny-sd3-pipe")
|
| 86 |
+
```
|