Create optuna.py
Browse files
optuna.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import optuna
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from trl import SFTTrainer
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
# Set random seed for reproducibility
|
| 10 |
+
random_seed = 42
|
| 11 |
+
torch.manual_seed(random_seed)
|
| 12 |
+
random.seed(random_seed)
|
| 13 |
+
|
| 14 |
+
# Load dataset
|
| 15 |
+
dataset = load_dataset("tatsu-lab/alpaca", split="train")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def chatml_format(example):
|
| 19 |
+
"""Format the dataset for training, accounting for empty columns."""
|
| 20 |
+
return {
|
| 21 |
+
"instruction": example['instruction'] if 'instruction' in example else " \n",
|
| 22 |
+
"input": example['input'] if 'input' in example else " \n",
|
| 23 |
+
"system": example['system'] if 'system' in example else " \n",
|
| 24 |
+
"output": example['output'] if 'output' in example else " \n",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Format dataset
|
| 29 |
+
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)
|
| 30 |
+
|
| 31 |
+
# Define the model initialization function
|
| 32 |
+
def model_init(trial=None):
|
| 33 |
+
original = False
|
| 34 |
+
params = {}
|
| 35 |
+
if trial is not None:
|
| 36 |
+
n_ahead = 1
|
| 37 |
+
n_ahead_talk = 1
|
| 38 |
+
n_passes = 1
|
| 39 |
+
gumbel_temperature = 1
|
| 40 |
+
use_start_thought_token = True
|
| 41 |
+
use_end_thought_token = True
|
| 42 |
+
include_policy_loss = True
|
| 43 |
+
gumbel_detach = True
|
| 44 |
+
merged_talk_heads = True
|
| 45 |
+
residual_think_head = False
|
| 46 |
+
optimize_lm_head_only_at_start = False
|
| 47 |
+
|
| 48 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
| 49 |
+
tokenizer_id = model_id
|
| 50 |
+
|
| 51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_id,
|
| 53 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 54 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
| 55 |
+
merged_talk_heads=merged_talk_heads,
|
| 56 |
+
merged_lm_and_talk_heads=False,
|
| 57 |
+
merged_lm_and_think_heads=True,
|
| 58 |
+
use_concat_talk_head=True,
|
| 59 |
+
use_shallow_think=True,
|
| 60 |
+
use_shallow_talk=False,
|
| 61 |
+
use_complex_think_head=False,
|
| 62 |
+
use_complex_talk_head=True,
|
| 63 |
+
use_weighted_talk_head=True,
|
| 64 |
+
trust_remote_code=True,
|
| 65 |
+
device_map="auto",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding="left")
|
| 69 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 70 |
+
|
| 71 |
+
special_tokens_to_add = []
|
| 72 |
+
if model.use_start_thought_token:
|
| 73 |
+
special_tokens_to_add.append("<|startthought|>")
|
| 74 |
+
if model.use_end_thought_token:
|
| 75 |
+
special_tokens_to_add.append("<|endthought|>")
|
| 76 |
+
if special_tokens_to_add:
|
| 77 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
| 78 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 79 |
+
model.tokenizer = tokenizer
|
| 80 |
+
for name, module in model.named_modules():
|
| 81 |
+
if "embed" in name:
|
| 82 |
+
print(module, flush=True)
|
| 83 |
+
|
| 84 |
+
model.gumbel_detach = gumbel_detach
|
| 85 |
+
model.include_policy_loss = include_policy_loss
|
| 86 |
+
model.use_end_thought_token = use_end_thought_token
|
| 87 |
+
model.use_start_thought_token = use_start_thought_token
|
| 88 |
+
model.n_ahead = n_ahead
|
| 89 |
+
model.n_ahead_talk = n_ahead_talk
|
| 90 |
+
model.n_passes = n_passes
|
| 91 |
+
model.residual_think_head = residual_think_head
|
| 92 |
+
model.gumbel_temperature = gumbel_temperature
|
| 93 |
+
model.original_mode = original
|
| 94 |
+
model.config_params = params
|
| 95 |
+
model.run_start = int(time.time())
|
| 96 |
+
model.train()
|
| 97 |
+
return model
|
| 98 |
+
|
| 99 |
+
# Define the objective function for Optuna
|
| 100 |
+
# Define the objective function for Optuna
|
| 101 |
+
def objective(trial):
|
| 102 |
+
# Hyperparameters to be optimized
|
| 103 |
+
learning_rate = trial.suggest_float("learning_rate", 1e-07, 1e-06, log=True)
|
| 104 |
+
max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 1.0)
|
| 105 |
+
warmup_steps = trial.suggest_int("warmup_steps", 0, 20)
|
| 106 |
+
gradient_accumulation_steps = trial.suggest_int("gradient_accumulation_steps", 4, 8)
|
| 107 |
+
|
| 108 |
+
model = model_init(trial)
|
| 109 |
+
|
| 110 |
+
training_args = TrainingArguments(
|
| 111 |
+
output_dir="./out",
|
| 112 |
+
num_train_epochs=3,
|
| 113 |
+
max_steps=30,
|
| 114 |
+
per_device_train_batch_size=1,
|
| 115 |
+
logging_steps=1,
|
| 116 |
+
optim="lion_32bit",
|
| 117 |
+
save_strategy="steps",
|
| 118 |
+
save_steps=3000,
|
| 119 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 120 |
+
learning_rate=learning_rate,
|
| 121 |
+
max_grad_norm=max_grad_norm,
|
| 122 |
+
warmup_steps=warmup_steps,
|
| 123 |
+
lr_scheduler_type="cosine",
|
| 124 |
+
report_to="none" # Disable reporting to avoid errors related to WandB in this context
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
trainer = SFTTrainer(
|
| 128 |
+
args=training_args,
|
| 129 |
+
train_dataset=dataset,
|
| 130 |
+
model=model,
|
| 131 |
+
tokenizer=model.tokenizer,
|
| 132 |
+
max_seq_length=1024,
|
| 133 |
+
dataset_text_field="output",
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Train the model and get the training loss
|
| 137 |
+
train_result = trainer.train()
|
| 138 |
+
loss = train_result.training_loss
|
| 139 |
+
|
| 140 |
+
return loss
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Create a study and optimize
|
| 144 |
+
study = optuna.create_study(storage="sqlite:///db.sqlite3")
|
| 145 |
+
study.optimize(objective, n_trials=100)
|
| 146 |
+
|
| 147 |
+
# Print the best trial
|
| 148 |
+
print("Best trial:")
|
| 149 |
+
trial = study.best_trial
|
| 150 |
+
print(f" Loss: {trial.value}")
|
| 151 |
+
print(" Params: ")
|
| 152 |
+
for key, value in trial.params.items():
|
| 153 |
+
print(f" {key}: {value}")
|