Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
import random
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from transformers import TrainingArguments
|
| 7 |
+
from trl import SFTTrainer
|
| 8 |
+
from peft import LoraConfig
|
| 9 |
+
|
| 10 |
+
import time
|
| 11 |
+
random_seed = 42
|
| 12 |
+
torch.manual_seed(random_seed)
|
| 13 |
+
random.seed(random_seed)
|
| 14 |
+
|
| 15 |
+
dataset = load_dataset("HuggingFaceH4/deita-10k-v0-sft", split="train_sft")
|
| 16 |
+
|
| 17 |
+
n_ahead_talk_global = 4
|
| 18 |
+
n_passes_global = 2
|
| 19 |
+
n_ahead_global = 12
|
| 20 |
+
n_examples = 1_000
|
| 21 |
+
full_batch_size = 8
|
| 22 |
+
eval_and_logging_steps = 2
|
| 23 |
+
save_steps = 100
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def model_init(params):
|
| 27 |
+
original = False
|
| 28 |
+
if params is None:
|
| 29 |
+
params = {}
|
| 30 |
+
else:
|
| 31 |
+
params = params.params
|
| 32 |
+
# save params to file
|
| 33 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
| 34 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
| 35 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
| 36 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
| 37 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
| 38 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
| 39 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
| 40 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
| 41 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
| 42 |
+
gradient_accumulation_steps = params.get("gradient_accumulation_steps", global_gradient_accumulation_steps)
|
| 43 |
+
residual_think_head = params.get("residual_think_head", False)
|
| 44 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
| 45 |
+
|
| 46 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
| 47 |
+
tokenizer_id = "Crystalcareai/Quiet-Star-Custom"
|
| 48 |
+
print("Loading model")
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
model_id,
|
| 51 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 52 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
| 53 |
+
merged_talk_heads=merged_talk_heads,
|
| 54 |
+
merged_lm_and_talk_heads=False,
|
| 55 |
+
merged_lm_and_think_heads=True,
|
| 56 |
+
use_concat_talk_head=True,
|
| 57 |
+
use_shallow_think=True,
|
| 58 |
+
use_shallow_talk=False,
|
| 59 |
+
use_complex_think_head=False,
|
| 60 |
+
use_complex_talk_head=True,
|
| 61 |
+
use_weighted_talk_head=True,
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
load_in_4bit=True,
|
| 64 |
+
)
|
| 65 |
+
print("Loaded model")
|
| 66 |
+
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,padding=False,truncation=True)
|
| 68 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 69 |
+
|
| 70 |
+
special_tokens_to_add = []
|
| 71 |
+
if model.use_start_thought_token:
|
| 72 |
+
special_tokens_to_add.append("<|startthought|>")
|
| 73 |
+
if model.use_end_thought_token:
|
| 74 |
+
special_tokens_to_add.append("<|endthought|>")
|
| 75 |
+
if special_tokens_to_add:
|
| 76 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
| 77 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 78 |
+
model.tokenizer = tokenizer
|
| 79 |
+
model.gumbel_detach = gumbel_detach
|
| 80 |
+
model.include_policy_loss = include_policy_loss
|
| 81 |
+
model.use_end_thought_token = use_end_thought_token
|
| 82 |
+
model.use_start_thought_token = use_start_thought_token
|
| 83 |
+
model.n_ahead = n_ahead
|
| 84 |
+
model.n_ahead_talk = n_ahead_talk
|
| 85 |
+
model.n_passes = n_passes
|
| 86 |
+
model.n_tokens_print = gradient_accumulation_steps
|
| 87 |
+
model.gradient_accumulation_steps = gradient_accumulation_steps
|
| 88 |
+
model.residual_think_head = residual_think_head
|
| 89 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
| 90 |
+
model.gumbel_temperature = gumbel_temperature
|
| 91 |
+
model.original_mode = original
|
| 92 |
+
model.config_params = params
|
| 93 |
+
model.run_start = int(time.time())
|
| 94 |
+
model.kill_after = 100
|
| 95 |
+
model.train()
|
| 96 |
+
return model
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
batch_size = full_batch_size // n_passes_global
|
| 100 |
+
global_gradient_accumulation_steps = full_batch_size // batch_size
|
| 101 |
+
run_id = int(time.time())
|
| 102 |
+
training_args = TrainingArguments(
|
| 103 |
+
output_dir="./out",
|
| 104 |
+
num_train_epochs=3,
|
| 105 |
+
per_device_train_batch_size=1,
|
| 106 |
+
gradient_checkpointing=False,
|
| 107 |
+
optim="adamw_bnb_8bit",
|
| 108 |
+
logging_steps=2,
|
| 109 |
+
save_strategy="steps",
|
| 110 |
+
save_steps=300,
|
| 111 |
+
|
| 112 |
+
bf16=True,
|
| 113 |
+
tf32=True,
|
| 114 |
+
learning_rate=2e-4,
|
| 115 |
+
max_grad_norm=0.3,
|
| 116 |
+
warmup_ratio=0.00,
|
| 117 |
+
lr_scheduler_type="constant",
|
| 118 |
+
push_to_hub=False,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
peft_config = LoraConfig(
|
| 122 |
+
lora_alpha=16,
|
| 123 |
+
lora_dropout=0.05,
|
| 124 |
+
r=32,
|
| 125 |
+
bias="none",
|
| 126 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],
|
| 127 |
+
task_type="CAUSAL_LM",
|
| 128 |
+
use_dora=False, # Enable Dora method
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
model = model_init(None) # Initialize the model
|
| 132 |
+
tokenizer = model.tokenizer
|
| 133 |
+
|
| 134 |
+
trainer = SFTTrainer(
|
| 135 |
+
args=training_args,
|
| 136 |
+
train_dataset=dataset,
|
| 137 |
+
model=model,
|
| 138 |
+
peft_config=peft_config,
|
| 139 |
+
tokenizer=tokenizer,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
trainer.train()
|