Update generate.py
Browse files- generate.py +17 -15
generate.py
CHANGED
|
@@ -1,12 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers.generation.utils import
|
| 3 |
-
GenerationMixin,
|
| 4 |
-
validate_stopping_criteria,
|
| 5 |
-
StoppingCriteriaList,
|
| 6 |
-
)
|
| 7 |
from transformers import TextStreamer
|
| 8 |
|
| 9 |
-
|
| 10 |
def custom_generate(
|
| 11 |
self,
|
| 12 |
input_ids,
|
|
@@ -72,13 +67,14 @@ def custom_generate(
|
|
| 72 |
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
| 73 |
|
| 74 |
new_ids_sampled = torch.multinomial(
|
| 75 |
-
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1
|
|
|
|
| 76 |
|
| 77 |
# Assign the new id to the last token
|
| 78 |
if last_token_idx + 1 >= len(base_answer_ids):
|
| 79 |
# Add padding everywhere
|
| 80 |
new_padding = torch.full((batch_size, 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
| 81 |
-
|
| 82 |
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
| 83 |
if attention_mask is not None:
|
| 84 |
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
|
@@ -94,15 +90,20 @@ def custom_generate(
|
|
| 94 |
# Check if the end token is generated
|
| 95 |
if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
|
| 96 |
finished_generating[answer_idx] = 1
|
| 97 |
-
|
| 98 |
if finished_generating.all():
|
| 99 |
break
|
| 100 |
|
| 101 |
if streamer is not None:
|
| 102 |
streamer.put(new_ids_sampled)
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
|
| 107 |
def generate(
|
| 108 |
self,
|
|
@@ -153,10 +154,9 @@ def generate(
|
|
| 153 |
torch_dtype=torch.bfloat16,
|
| 154 |
**model_kwargs,
|
| 155 |
):
|
| 156 |
-
|
| 157 |
if max_new_tokens is None:
|
| 158 |
-
max_new_tokens = 128
|
| 159 |
-
|
| 160 |
# Set model attributes
|
| 161 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
| 162 |
self.merged_talk_heads = merged_talk_heads
|
|
@@ -190,7 +190,7 @@ def generate(
|
|
| 190 |
|
| 191 |
generated_token_ids = custom_generate(
|
| 192 |
self,
|
| 193 |
-
input_ids=input_ids,
|
| 194 |
attention_mask=attention_mask,
|
| 195 |
max_new_tokens=max_new_tokens,
|
| 196 |
min_length=min_length,
|
|
@@ -225,4 +225,6 @@ def generate(
|
|
| 225 |
**model_kwargs,
|
| 226 |
)
|
| 227 |
|
| 228 |
-
return
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers.generation.utils import GenerationMixin, validate_stopping_criteria, StoppingCriteriaList
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import TextStreamer
|
| 4 |
|
|
|
|
| 5 |
def custom_generate(
|
| 6 |
self,
|
| 7 |
input_ids,
|
|
|
|
| 67 |
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
| 68 |
|
| 69 |
new_ids_sampled = torch.multinomial(
|
| 70 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temperature, dim=-1), 1
|
| 71 |
+
)
|
| 72 |
|
| 73 |
# Assign the new id to the last token
|
| 74 |
if last_token_idx + 1 >= len(base_answer_ids):
|
| 75 |
# Add padding everywhere
|
| 76 |
new_padding = torch.full((batch_size, 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
| 77 |
+
device=device)
|
| 78 |
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
| 79 |
if attention_mask is not None:
|
| 80 |
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
|
|
|
| 90 |
# Check if the end token is generated
|
| 91 |
if new_ids_sampled == self.tokenizer.convert_tokens_to_ids("</s>"):
|
| 92 |
finished_generating[answer_idx] = 1
|
| 93 |
+
|
| 94 |
if finished_generating.all():
|
| 95 |
break
|
| 96 |
|
| 97 |
if streamer is not None:
|
| 98 |
streamer.put(new_ids_sampled)
|
| 99 |
|
| 100 |
+
# Check if dynamic_temperature argument is present
|
| 101 |
+
if 'dynamic_temperature' in kwargs and kwargs['dynamic_temperature'] is not None:
|
| 102 |
+
# Convert generated token IDs to strings and return them
|
| 103 |
+
generated_text = self.tokenizer.batch_decode(generated_token_ids, skip_special_tokens=True)
|
| 104 |
+
return generated_text
|
| 105 |
|
| 106 |
+
return generated_token_ids
|
| 107 |
|
| 108 |
def generate(
|
| 109 |
self,
|
|
|
|
| 154 |
torch_dtype=torch.bfloat16,
|
| 155 |
**model_kwargs,
|
| 156 |
):
|
|
|
|
| 157 |
if max_new_tokens is None:
|
| 158 |
+
max_new_tokens = 128
|
| 159 |
+
|
| 160 |
# Set model attributes
|
| 161 |
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
| 162 |
self.merged_talk_heads = merged_talk_heads
|
|
|
|
| 190 |
|
| 191 |
generated_token_ids = custom_generate(
|
| 192 |
self,
|
| 193 |
+
input_ids=input_ids,
|
| 194 |
attention_mask=attention_mask,
|
| 195 |
max_new_tokens=max_new_tokens,
|
| 196 |
min_length=min_length,
|
|
|
|
| 225 |
**model_kwargs,
|
| 226 |
)
|
| 227 |
|
| 228 |
+
# Convert generated token IDs to strings and return them
|
| 229 |
+
generated_text = self.tokenizer.batch_decode(generated_token_ids, skip_special_tokens=True)
|
| 230 |
+
return generated_text
|