CocoNutZENG commited on
Commit
488bc57
·
verified ·
1 Parent(s): a29e793

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -3
README.md CHANGED
@@ -1,3 +1,39 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - FreedomIntelligence/Huatuo26M-Lite
5
+ - CocoNutZENG/NeuroQABenchmark
6
+ language:
7
+ - zh
8
+ - en
9
+ metrics:
10
+ - accuracy
11
+ base_model:
12
+ - Qwen/Qwen2.5-7B-Instruct
13
+ tags:
14
+ - medical
15
+ ---
16
+ ## Introduction
17
+ Train LLM to be neuroscientist. It expected to work in Chinese and Engliah environment.
18
+
19
+ ## Data
20
+ 1. [FreedomIntelligence/Huatuo26M-Lite](https://huggingface.co/datasets/FreedomIntelligence/Huatuo26M-Lite). We select neuroscience(神经科学) label as train data.
21
+ 2. [CocoNutZENG/NeuroQABenchmark](https://huggingface.co/datasets/CocoNutZENG/NeuroQABenchmark)
22
+
23
+
24
+ ## Train Detail
25
+ We fine-tuned the Qwen2.5 model using supervised fine-tuning (SFT) with LoRA for efficient parameter optimization. The LoRA configuration employed a rank of 8 (R=8) to
26
+ balance adaptation quality with computational efficiency. Training was conducted for 1 epoch (approximately 1 hour duration) using two NVIDIA A40 GPUs with DeepSpeed’s Stage 2 optimization
27
+ for memory efficiency. We adopted the Adam optimizer with an initial learning rate of 5e-5 and a
28
+ cosine learning rate scheduler for smooth decay. This configuration achieved effective model adaptation while maintaining computational tractability on our hardware setup. Our model’s loss drop as
29
+ expected, see figure below for loss detail.
30
+ [![image.png](https://i.postimg.cc/d30KMJCQ/image.png)](https://postimg.cc/62FPnJzF)
31
+
32
+ ## Evalution
33
+ | Model | Acc |
34
+ |----------------|-------|
35
+ | Qwen2.5-3b | 0.788 |
36
+ | Qwen2.5-7b | 0.820 |
37
+ | +Huatu0Lite | 0.832 |
38
+ | +Full data | 0.848 |
39
+