Commit
·
13f21d0
1
Parent(s):
0706518
Update README.md
Browse files
README.md
CHANGED
|
@@ -42,6 +42,8 @@ alt="instruction BERT drawing" width="600"/>
|
|
| 42 |
|
| 43 |
A minimalistic instruction model with an already good analysed and pretrained encoder like BERT.
|
| 44 |
So we can research the [Bertology](https://aclanthology.org/2020.tacl-1.54.pdf) with instruction-tuned models, [look at the attention](https://colab.research.google.com/drive/1mNP7c0RzABnoUgE6isq8FTp-NuYNtrcH?usp=sharing) and investigate [what happens to BERT embeddings during fine-tuning](https://aclanthology.org/2020.blackboxnlp-1.4.pdf).
|
|
|
|
|
|
|
| 45 |
We used the Huggingface API for [warm-starting](https://huggingface.co/blog/warm-starting-encoder-decoder) [BertGeneration](https://huggingface.co/docs/transformers/model_doc/bert-generation) with [Encoder-Decoder-Models](https://huggingface.co/docs/transformers/v4.35.2/en/model_doc/encoder-decoder) for this purpose.
|
| 46 |
|
| 47 |
## Run the model with a longer output
|
|
@@ -58,4 +60,13 @@ input = "Write a poem about love, peace and pancake."
|
|
| 58 |
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
| 59 |
output_ids = model.generate(input_ids, max_new_tokens=200)
|
| 60 |
print(tokenizer.decode(output_ids[0]))
|
| 61 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
A minimalistic instruction model with an already good analysed and pretrained encoder like BERT.
|
| 44 |
So we can research the [Bertology](https://aclanthology.org/2020.tacl-1.54.pdf) with instruction-tuned models, [look at the attention](https://colab.research.google.com/drive/1mNP7c0RzABnoUgE6isq8FTp-NuYNtrcH?usp=sharing) and investigate [what happens to BERT embeddings during fine-tuning](https://aclanthology.org/2020.blackboxnlp-1.4.pdf).
|
| 45 |
+
|
| 46 |
+
The trainings code is released at the [instructionBERT repository](https://gitlab.com/Bachstelze/instructionbert).
|
| 47 |
We used the Huggingface API for [warm-starting](https://huggingface.co/blog/warm-starting-encoder-decoder) [BertGeneration](https://huggingface.co/docs/transformers/model_doc/bert-generation) with [Encoder-Decoder-Models](https://huggingface.co/docs/transformers/v4.35.2/en/model_doc/encoder-decoder) for this purpose.
|
| 48 |
|
| 49 |
## Run the model with a longer output
|
|
|
|
| 60 |
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
| 61 |
output_ids = model.generate(input_ids, max_new_tokens=200)
|
| 62 |
print(tokenizer.decode(output_ids[0]))
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## Training parameters
|
| 66 |
+
|
| 67 |
+
- base model: "bert-base-cased"
|
| 68 |
+
- test subset of the Muennighoff/flan dataset
|
| 69 |
+
- trained for 0.97 epochs
|
| 70 |
+
- batch size of 14
|
| 71 |
+
- 10000 warm-up steps
|
| 72 |
+
- learning rate of 0.00005
|