gautamnancy commited on
Commit
72a266d
·
verified ·
1 Parent(s): 1548498

Upload 7 files

Browse files
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RoBERTa-Base Model for Temporal Information Extraction
2
+
3
+ This repository hosts a fine-tuned version of RoBERTa for **temporal information extraction**, where the model identifies and extracts time-related expressions (e.g., dates, durations) from text. The pipeline includes preprocessing, fine-tuning, and inference on labeled temporal datasets.
4
+
5
+ ---
6
+
7
+ ## Model Details
8
+
9
+ - **Model Name:** RoBERTa-Base
10
+ - **Model Architecture:** RoBERTa Token Classification
11
+ - **Task:** Temporal Entity Extraction
12
+ - **Dataset:** Custom JSON format with annotated temporal SPO triples
13
+ - **Fine-tuning Framework:** Hugging Face Transformers
14
+ - **Output Labels:** `B-TIMEX`, `I-TIMEX`, `O`
15
+
16
+ ---
17
+
18
+ ## Usage
19
+
20
+ ### Installation
21
+
22
+ ```bash
23
+ pip install transformers datasets evaluate
24
+
25
+ # Loading the Fine-Tuned Model
26
+
27
+ from transformers import RobertaTokenizerFast, RobertaForTokenClassification
28
+ import torch
29
+
30
+ # Load model and tokenizer
31
+ model = RobertaForTokenClassification.from_pretrained("./temporal_model")
32
+ tokenizer = RobertaTokenizerFast.from_pretrained("./temporal_model", add_prefix_space=True)
33
+
34
+ # Inference function
35
+ def extract_temporal_entities(text):
36
+ tokens = text.split()
37
+ inputs = tokenizer(tokens, return_tensors="pt", is_split_into_words=True)
38
+ outputs = model(**inputs)
39
+ predictions = outputs.logits.argmax(dim=-1).squeeze().tolist()
40
+ word_ids = inputs.word_ids()[0]
41
+
42
+ temporal_spans = []
43
+ current = []
44
+ for idx, word_idx in enumerate(word_ids):
45
+ if word_idx is None:
46
+ continue
47
+ label = id2label[predictions[idx]]
48
+ if label == "B-TIMEX":
49
+ if current:
50
+ temporal_spans.append(" ".join(current))
51
+ current = [tokens[word_idx]]
52
+ elif label == "I-TIMEX":
53
+ current.append(tokens[word_idx])
54
+ else:
55
+ if current:
56
+ temporal_spans.append(" ".join(current))
57
+ current = []
58
+ if current:
59
+ temporal_spans.append(" ".join(current))
60
+ return temporal_spans
61
+
62
+
63
+ # Performance Metrics
64
+ Evaluation Accuracy: ~0.76
65
+
66
+ F1 Score: Tracked using seqeval (BIO format)
67
+
68
+ Evaluation Strategy: epoch
69
+
70
+ # Fine-Tuning Details
71
+ Dataset
72
+ The dataset consists of manually or script-labeled SPO-style JSON entries with the following fields:
73
+
74
+ text: Raw input string
75
+
76
+ spo_list: A list of subject-predicate-object relations, including:
77
+
78
+ Subject & Object Span
79
+
80
+ Type (e.g., Date, Location)
81
+
82
+ The text is tokenized, and BIO labels are applied for token classification.
83
+
84
+ # Training Configuration
85
+
86
+ Epochs: 3
87
+
88
+ Batch Size: 16
89
+
90
+ Learning Rate: 2e-5
91
+
92
+ Max Sequence Length: 128 tokens
93
+
94
+ Tokenizer: roberta-base with add_prefix_space=True
95
+
96
+ # Repository Structure
97
+ pgsql
98
+ Copy
99
+ Edit
100
+ .
101
+ ├── temporal_model/ # Fine-tuned model and tokenizer
102
+ │ ├── config.json
103
+ │ ├── pytorch_model.bin
104
+ │ ├── tokenizer_config.json
105
+ │ ├── vocab.json
106
+ │ └── special_tokens_map.json
107
+ ├── temporal-information-extraction.ipynb
108
+ ├── README.md
109
+
110
+ # Limitations
111
+
112
+ The model is domain-specific; generalization to other types of temporal expressions (e.g., informal text) may require additional training.
113
+
114
+ BIO tagging may fail in overlapping or nested entity scenarios.
115
+
116
+ # Contributing
117
+ Contributions are welcome! Feel free to open an issue or submit a pull request to improve model performance or add new datasets.
118
+
config (1).json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "LABEL_0": 0,
21
+ "LABEL_1": 1,
22
+ "LABEL_2": 2
23
+ },
24
+ "layer_norm_eps": 1e-05,
25
+ "max_position_embeddings": 514,
26
+ "model_type": "roberta",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 1,
30
+ "position_embedding_type": "absolute",
31
+ "torch_dtype": "float16",
32
+ "transformers_version": "4.51.3",
33
+ "type_vocab_size": 1,
34
+ "use_cache": true,
35
+ "vocab_size": 50265
36
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model (1).safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0007fb807b07d163f3b7b1782b6c3aae9829d594abd477327ddfab522052db82
3
+ size 248138558
special_tokens_map (1).json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config (1).json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff