File size: 9,599 Bytes
edac9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d194f
edac9ed
f9d194f
edac9ed
 
 
 
f9d194f
edac9ed
 
 
 
 
7e03124
 
 
 
 
8b5752f
7e03124
edac9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e03124
 
edac9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
language:
- en
- ru
tags:
- vision
- image-classification
- style-recognition
- anime
- danbooru
- artist-identification
- few-shot
- aniworldai
- onnx
license: apache-2.0
base_model: facebook/convnext-tiny-224
library_name: onnxruntime
pipeline_tag: image-classification
---

# 🎨 Author_ID — Anime Artist Style Recognition

<div align="center">
    <a href="https://aniworldai.org/">
        <img src="https://img.shields.io/badge/AniWorldAI-Official-blue?style=for-the-badge&logo=web" alt="AniWorldAI Website">
    </a>
    <a href="https://t.me/aniworldai">
        <img src="https://img.shields.io/badge/Telegram-Channel-2CA5E0?style=for-the-badge&logo=telegram" alt="Telegram Channel">
    </a>
    <a href="https://t.me/aniworld_bot">
        <img src="https://img.shields.io/badge/🔥_Full_3000_Authors-Try_in_Bot-orange?style=for-the-badge&logo=telegram" alt="Try Full Version">
    </a>
</div>

<br>

## 🇬🇧 English Description

**Author_ID** is an AI model that recognizes the **artistic style** of anime illustrations and identifies the most likely artist from **Danbooru** database.

Think of it as **"Shazam for anime art"** — upload any illustration and instantly discover who drew it or whose style it resembles.

### 🧠 Architecture: Face ID for Art

This model is built using the same architectural principles as **Apple Face ID**:

| Face ID | Author_ID |
|---------|-----------|
| Encodes facial features into embedding | Encodes artistic style into embedding |
| Compares with stored face template | Compares with artist style centroids |
| Works with one photo enrollment | Works with few-shot artist samples |

The model generates a **512-dimensional style embedding** and compares it against precomputed artist centroids using cosine similarity.

### ⚡ Few-Shot Learning

Unlike traditional classifiers that require thousands of samples per class, Author_ID uses a **metric learning** approach:

- **No retraining needed** to add new artists
- Just compute centroid from **3-5 sample images**
- Instantly searchable in the embedding space

### 📦 Model Versions

| Version | Authors | Availability |
|---------|---------|--------------|
| **Demo (this repo)** | 500 | Free download |
| **Full** | 3000+ | [Telegram Bot](https://t.me/aniworld_bot) |

### 🏷️ Output Format

Returns top-5 most similar artists with confidence scores:
```
(artist:hiten:0.87), (artist:saitom:0.72), (artist:anmi:0.68), ...
```

---

## 🇷🇺 Описание на русском

**Author_ID** — это ИИ-модель, которая распознаёт **художественный стиль** аниме-иллюстраций и определяет наиболее вероятного автора из базы **Danbooru**.

Можно сказать, это **"Shazam для аниме-артов"** — загрузите любую картинку и мгновенно узнайте, кто её нарисовал или чей стиль она напоминает.

### 🧠 Архитектура: Face ID для арта

Модель построена по тем же принципам, что и **Apple Face ID**:

| Face ID | Author_ID |
|---------|-----------|
| Кодирует черты лица в эмбеддинг | Кодирует стиль рисунка в эмбеддинг |
| Сравнивает с сохранённым шаблоном | Сравнивает с центроидами авторов |
| Работает с одним фото при регистрации | Работает с few-shot примерами |

Модель генерирует **512-мерный вектор стиля** и сравнивает его с предрассчитанными центроидами авторов через косинусное сходство.

### ⚡ Few-Shot обучение

В отличие от классических классификаторов, Author_ID использует **metric learning**:

- **Не требует переобучения** для новых авторов
- Достаточно **3-5 примеров** для создания центроида
- Мгновенный поиск в пространстве эмбеддингов

### 📦 Версии модели

| Версия | Авторов | Доступность |
|--------|---------|-------------|
| **Demo (этот репо)** | 500 | Бесплатно |
| **Full** | 3000+ | [Telegram Bot](https://t.me/aniworld_bot) |

---

## 🚀 How to Use / Как использовать

### Installation / Установка
```bash
pip install onnxruntime onnx pillow numpy huggingface_hub
# or for GPU / или для GPU:
pip install onnxruntime-gpu onnx pillow numpy huggingface_hub
```

### Inference / Инференс

```python
import onnxruntime as ort
import onnx
import numpy as np
from PIL import Image
import json
from huggingface_hub import hf_hub_download

# Download model from HuggingFace (cached automatically)
MODEL_PATH = hf_hub_download(
    repo_id="AugustLabs/Author_ID",
    filename=" style_predictor_500.onnx"
)

class AuthorID:
    """
    Author_ID: Anime Artist Style Recognition
    Single ONNX file contains: model + centroids + author names
    """
    
    def __init__(self, onnx_path):
        # Load metadata (author names embedded in ONNX)
        model_onnx = onnx.load(onnx_path)
        self.names = []
        self.input_size = 384
        
        for prop in model_onnx.metadata_props:
            if prop.key == "author_names":
                self.names = json.loads(prop.value)
            elif prop.key == "input_size":
                self.input_size = int(prop.value)
        
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        self.session = ort.InferenceSession(onnx_path, providers=providers)
        
        self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
        self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)

    def preprocess(self, image_path):
        img = Image.open(image_path)
        
        # Handle transparency
        if img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info):
            bg = Image.new('RGB', img.size, (255, 255, 255))
            img = img.convert('RGBA')
            bg.paste(img, mask=img.split()[3])
            img = bg
        else:
            img = img.convert('RGB')
        
        img = img.resize((self.input_size, self.input_size), Image.BILINEAR)
        
        img_np = np.array(img, dtype=np.float32) / 255.0
        img_np = img_np.transpose(2, 0, 1)[np.newaxis, ...]
        img_np = (img_np - self.mean) / self.std
        
        return img_np

    def predict(self, image_path, top_k=5):
        """Returns list of (author_name, similarity_score)"""
        img_np = self.preprocess(image_path)
        top_indices, top_scores = self.session.run(None, {'image': img_np})
        
        results = []
        for idx, score in zip(top_indices[0][:top_k], top_scores[0][:top_k]):
            results.append((self.names[idx], float(score)))
        
        return results

    def predict_tags(self, image_path, top_k=5):
        """Returns formatted tags: (artist:name:score)"""
        results = self.predict(image_path, top_k)
        return [f"(artist:{name}:{score:.2f})" for name, score in results]


# === Example Usage ===
if __name__ == "__main__":
    # Initialize (once) — model downloads automatically
    model = AuthorID(MODEL_PATH)
    
    # Predict
    results = model.predict("your_image.jpg", top_k=5)
    
    print("🎨 Detected artist styles:")
    for author, score in results:
        print(f"   {author}: {score:.1%}")
    
    # Or get formatted tags
    tags = model.predict_tags("your_image.jpg")
    print("\n📝 Tags:", ", ".join(tags))
```

### Expected Output / Пример вывода
```
🎨 Detected artist styles:
   hiten_(hitenkei): 87.3%
   saitom: 71.8%
   anmi: 68.2%
   kantoku: 65.1%
   mishima_kurone: 62.4%

📝 Tags: (artist:hiten_(hitenkei):0.87), (artist:saitom:0.72), (artist:anmi:0.68), (artist:kantoku:0.65), (artist:mishima_kurone:0.62)
```

---

## 📊 Technical Details / Технические детали

| Parameter | Value |
|-----------|-------|
| Backbone | ConvNeXt-Tiny |
| Embedding dim | 512 |
| Input size | 384×384 |
| Training data | Danbooru (filtered) |
| Metric | Cosine similarity |
| Format | ONNX (opset 17) |

---

## ⚠️ Limitations / Ограничения

- Works best on **anime/manga style** illustrations
- May confuse artists with very similar styles
- Confidence drops on **heavily cropped** or **low-quality** images
- Demo version limited to **500 authors**

---

<div align="center">

## 🔥 Want the full 3000+ artist version?

<a href="https://t.me/aniworld_bot">
    <img src="https://img.shields.io/badge/Try_Full_Version-Telegram_Bot-2CA5E0?style=for-the-badge&logo=telegram&logoColor=white" alt="Telegram Bot">
</a>

<br><br>

**More AI Models & News:**

<a href="https://aniworldai.org/">
    <img src="https://img.shields.io/badge/🌐_AniWorldAI.org-Website-blue?style=flat&logo=google-chrome" alt="Website">
</a>
<a href="https://t.me/aniworldai">
    <img src="https://img.shields.io/badge/📢_Subscribe-Telegram_Channel-2CA5E0?style=flat&logo=telegram" alt="Channel">
</a>
<a href="https://huggingface.co/AniWorldAI">
    <img src="https://img.shields.io/badge/🤗_More_Models-HuggingFace-yellow?style=flat" alt="HuggingFace">
</a>

</div>