--- base_model: AquilaX-AI/ai_scanner tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AquilaX-AI - **License:** apache-2.0 - **Finetuned from model :** AquilaX-AI/ai_scanner This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ```python pip install gguf pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import torch import json model_id = "AquilaX-AI/AI-Scanner-Quantized" filename = "unsloth.Q8_0.gguf" tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename) model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) sys_prompt = """<|im_start|>system\nYou are Securitron, an AI assistant specialized in detecting vulnerabilities in source code. Analyze the provided code and provide a structured report on any security issues found.<|im_end|>""" user_prompt = """ CODE FOR SCANNING """ prompt = f"""{sys_prompt} <|im_start|>user {user_prompt}<|im_end|> <|im_start|>assistant """ encodeds = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.to(device) text_streamer = TextStreamer(tokenizer, skip_prompt=True) response = model.generate( input_ids=encodeds, streamer=text_streamer, max_new_tokens=4096, use_cache=True, pad_token_id=151645, eos_token_id=151645, num_return_sequences=1 ) output = json.loads(tokenizer.decode(response[0]).split('<|im_start|>assistant')[-1].split('<|im_end|>')[0].strip()) ```