--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: populism_model102 results: [] --- # populism_model102 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5708 - Accuracy: 0.9464 - F1: 0.6102 - Recall: 0.6667 - Precision: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | No log | 1.0 | 14 | 0.2667 | 0.9021 | 0.5116 | 0.8148 | 0.3729 | | No log | 2.0 | 28 | 0.2540 | 0.8718 | 0.4660 | 0.8889 | 0.3158 | | No log | 3.0 | 42 | 0.3540 | 0.9231 | 0.5479 | 0.7407 | 0.4348 | | 0.2038 | 4.0 | 56 | 0.3997 | 0.9207 | 0.5405 | 0.7407 | 0.4255 | | 0.2038 | 5.0 | 70 | 0.5708 | 0.9464 | 0.6102 | 0.6667 | 0.5625 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0